Electronic Supplementary Information (ESI) Engineering Polyvinyl Butyral-Hydrogel as Thermochromic Interlayer for Energy-Saving Window Zequn Lin^{1,2}, Zican Yang^{1,2}, Liang Gao^{1,2*} 1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China. Email: Liang Gao: gaoliang@gdut.edu.cn; 2. Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, P. R. China.

Table of content:

1

- 2 I) General Materials and Methods
- 3 II) Supplementary Notes 1-11
- 4 III) Supplementary References

5 Descriptions on the Supplementary Videos

6 Video S1. The distinct LCST phase transfer phenomenon of short alkyl side chains
7 modified PVA analogies with identical degree of substitution: the PVA derivative with
8 an octyl side chain exhibits a sluggish and irreversible phase transfer, whereas the PVA
9 modified with a butyl side chain undergoes fast and reversible LCST phase transfer.

10 Video S2. Cyclic switches between opacity and transparent states: In this video, the 11 FIRST hydrogel was sandwiched between a normal glass and an ITO glass, placed in a 12 10°C environment. The ITO glass was heated using alternating currents at a frequency 13 of 0.1 Hz, resulting in cyclic switches between the hydrogel's opacity and transparent 14 states.

15 Video S3. The thermal response of the FIRST hydrogel-based thermochromic windows16 with phase transition being triggered by finger touch.

I I. General Materials and Methods

2 Materials: All reagents and solvents were used without further purification unless
3 otherwise stated. Poly(vinyl alcohol) (PVA (99+% hydrolyzed); M_w: 146,0004 186,000) was purchased from Sigma Aldrich. *n*-butanal, N,N'-Dimethylformamide
5 (DMF), sodium bicarbonate and acetonitrile were supplied by Macklin (China).

Synthesis of kilogram-scale PVB with low acetalization degree: 3 kg PVA was 6 7 fully dissolved in 60 L water at 100 °C, followed by naturally cooling to 40 °C. Then, 0.91 L butyraldehyde was charged dropwise into the PVA solution and kept vigorous 8 stirring for 4 h. Subsequentially, the temperature of the reaction solution was cooled 9 down to 10 °C, and then 0.25 L diluted sulfuric acid (10 wt.%) was added dropwise 10 to initiate the acetylation. After stirring for approximate 3 hours, a milky suspension 11 was produced and poured into excessive amount of saturated sodium bicarbonate 12 solution with pH=8 to immediately terminate the reaction. Then, the suspension was 13 filtrated, and the filter cake was collected. After intensively washing with 50 °C DI 14 water, the powder was dried under 45 °C. 15

FIRST hydrogel: PVB was prepared according to the procedure outlined above and 16 subsequently dissolved in DMF or DMSO at a concentration of approximately 8-10 17 wt%. The resulting clear solutions were injected into a glass mold with a uniform 18 depth of approximately 3 mm. These molds were left exposed to a low relative 19 humidity environment (~13%) until a constant weight was achieved. During our series 20 of trial experiments, maintaining the atmospheric temperature at approximately 50°C, 21 we successfully obtained a clean and smooth film 0.3 mm within 48 hours. This 22 freshly fabricated film was then subjected to equilibration in LiCl solution (10 wt%) 23 at around 20°C, resulting in the desired FIRST hydrogel of 0.3 mm. Note that the 24 25 depth of injected liquids can be varied to achieve samples with different thickness.

26 General physical characterizations: Nuclear Magnetic Resonance (NMR). The 27 NMR spectrum of C4-0.3 was recorded by using d_6 -DMSO as the solvent on a Bruker 28 400 MHz spectrometry. Gel Permeation Chromatography (GPC). GPC 29 measurements were carried out in DMF with 0.1 M LiBr at 60 °C with the Agilent 1260 30 Infinity II instrument, equipped with PLgel 10 μ m MIXED-B columns, and a

differential refractive index (DRI) detector. The systemwas calibrated with $poly(\gamma$ -1 benzyl-L-glutamate) standards at a flow rate of 1.0 mL/min. Fourier transform 2 infrared spectra (FTIR). The bonding information of the solid-state dry FIRST gel 3 and PVA semi-crystalline was studied using a Nicolet 6700 with an attenuated total 4 reflection (ATR) accessory (resolution: 4 cm⁻¹). Differential scanning calorimeter 5 (DSC). The changes in intermolecular cohesion after PVA grafting of butyraldehyde 6 side chains were investigated by DSC (Q20, TA, America) at a rate of 10 °C /min from 7 -30 °C to 125 °C under N₂ flow (30 ml/min). Scanning electron microscope (SEM). 8 9 The image of FIRST hydrogels is completed by the steps of equilibrating at the 10 corresponding temperature, quickly putting them into a locked state in liquid nitrogen, and finally taking them under a scanning electron microscope (SU8220, Hitach, Japan). 11 12 Rheological test. The temperature ramp test and the oscillation sweep test were carried out in the rheometer (ares-g2, TA, America). In the temperature ramp test, the strain (13 γ) is 1% and the heating rate is 1 K/min. The temperature range is -15-40 °C, and the 14 number of cycles is 1. the test temperature is -15°C, 20°C and 40°C, and the scanning 15 16 time is 600s. A disk-shaped sample with a diameter of 25.0 mm and a thickness of 0.5 mm was fixed between plain metal plates. To prevent water evaporating from the gel, 17 18 the sample was surrounded by water during the measurement. Raman spectroscopy. The samples were tested on a confocal Raman spectrometer equipped with a heated and 19 20 cooled stage (LabRAM HR Evolution, HORIBA Jobin Yvon, France), using a 785 nm laser for excitation, an integration time of 60 s, and a cycle number of 1. The process 21 adopts a heating rate of 1 K/min and a stabilization time of 20 min. The collected 22 spectral data is processed with Labspec software. Differential Scanning Calorimetry. 23 24 DSC measurement was conducted on a DSC 214 (DSC3). 5-10 mg hydrogel sample was collected in the aluminum pan, and an empty pan was used as reference. All 25 hydrogel samples were equilibrated at 15 °C for 5 min, ramped at 2 °C/min to 40 °C 26 under nitrogen atmosphere. Mechanical test. Tensile test was performed with a 27 hydrogel sample with a length of 20 mm, width of 8 mm and thickness of 300 mm at 28 high temperature, room temperature and low temperature (i.e. 40, 25, -15°C). 29 Rectangular sheets of hydrogel samples were fixed to two fixture and mounted in an 30 Inspekt Table Blue 5KN tension tester with a 500 N load cell, with ambient temperature 31 controlled by an environmental chamber supplied with liquid nitrogen. 32

II. Supplementary Notes Supplementary Note 1. Summary on reported hydrogel systems related to this work.

As laminate for thermochromic windows, the majority of thermosensitive hydrogels 4 currently in use are created through covalently crosslinking assorted monomers and 5 6 crosslinking reagents. Despite great progress, these systems suffer from several drawbacks. For example, although an aqueous dispersion of LCST microgels undergo 7 fast and uniform LCST phase separation, and flow to fit arbitrary shape of windows,^{1,} 8 9 ² but they are prone to leak when the glass cracks. Also, the suspension of aggregated polymers is susceptible to precipitate upon chromic setting, leading to the failure in 10 optical shielding. Bulk hydrogels can circumvent these issues, but they typically 11 experience significant reduction in volume after undergoing a phase transition (refer to 12 Tables S1-S2). Additionally, most isochoric LCST hydrogels tend to stiffen when 13 14 exposed to heat, which hampers their ability to relax and flow, thus limiting their thermal processability and potential for recovery. 15

Thermal response type	Hydrogel	Crosslinking	Volume shrinkage ^a	Referenc e ^c	
	PNIPAM	Covalent crosslinking	Significant syneresis (present in Figure S4 in the cited paper)	3	
	P(NIPAM-co-DMAA)	Covalent crosslinking	No significant syneresis		
LCST	PNIPA-PDMA	Covalent crosslinking	No significant syneresis	4	
	PNIPAM-PDMA	Covalent crosslinking	No significant syneresis	5	
	PNIPAM/POSS hybrid	Covalent crosslinking	Significant syneresis (present in Figure 5 in the cited paper)	6	
	PNIPAM/VO ₂	Covalent crosslinking	NA ^b	7	

16 Table S1. Crosslinking types and syneresis during phase transition for several typical17 LCST and UCST hydrogels that potentially useful for thermochromic windows.

	PNIPAM/VO2@SiO2	Covalent crosslinking	NA	8
	PNIPAM/PEG	Covalent crosslinking	Significant syneresis (about 37%- as present in Figure 5 in the cited paper)	0
	PNIPAM/PEG/PANI	Covalent crosslinking	Significant syneresis (about 37-50% as present in Figure 5 in the cited paper)	9
	PNIPAM-GO	Covalent crosslinking	Significant syneresis (about 40-65% as present in Figure 5 in the cited paper)	10
	PNIPAM-HPC composite	Covalent crosslinking	Not significant	11
	H-ESO- HEC/poly(NVCL- <i>co</i> - DMAA)	Covalent crosslinking	Significant syneresis (about 86% as present in Figure 5a in the cited paper)	12
	Poly (<i>N</i> - isopropylacrylamide- <i>co</i> - acryloylaminozaobenzene,	Covalent crosslinking	Significant syneresis (about 94-96% as present in Figure 1 in the cited paper)	13
	PAAc/CaAc	Covalent crosslinking	Not significant	14
	PU/POSS	Covalent crosslinking	No significant shrinkage but obvious deformation upon heating (as present in Figure 2a in the cited paper)	15
	PNVCL	Covalent crosslinking	Significant syneresis (about 72% as present in Figure 7 in the cited paper)	16
	PNVCL-Clay composite	Physical crosslinking (Clay surface)	Significant syneresis (about 77%-83% as present in Figure 7 in the cited paper)	10
	HPC imbedded within PAM-PAA	Covalent crosslinking	Not significant	17
	EGP5/ATO	Covalent crosslinking	Not significant	18
UCST	PAAm-SDS	crosslinking	Not significant	19 20
	1 AAIII-SDS-F 111	Covalelli	INA	

	crosslinking		
PAAm-SDS-LiCl	Carratent	NA ^a	
PAAm-SDS- NaCl	covalent	Not significant	21
PAAm-SDS- KCl	crossinking	NA ^a	
DEC/DAAm SDS DTH	Covalent	NI A a	22
FEG/FAAIII- SDS-FTH	crosslinking	NA	

1 a The volume shrinkage percentage is defined as 1-($V_{T>LCST}/V_0$), where $V_{T>LCST}$ and V_0 are the volume

2 of hydrogel. In some literatures, the volume shrinkage percentage was not qualitatively provided.

3 ^bNo available data was reported in relevant literature. The information about these LCST-type hydrogel

4 systems is partially sourced from various recent reviews focusing on "hydrogel smart windows"^{8, 23}.

5 c Please be aware that the cited references may not directly address the application of thermochromic

6 windows. However, it is worth noting that the LCST hydrogels developed in these studies have the

7 potential to serve as effective laminates for thermochromic windows.

8 Table S2. Isochoric LCST hydrogels with thermally-induced stiffening effect.

Hydrogel	Crosslinking	Thermally induced stiffening	Reference ^b	
	Covalent	Var		
PNIPAM-PDMA	crosslinking	res	4	
	Covalent	Var	·	
PNIPAM-PDMA	crosslinking	res		
	Covalent	Var	14	
PAAC/CaAc	crosslinking	res		
	Covalent	V	5	
PNIPAM-PDMA	crosslinking	Yes	5	
	Covalent	NI A a	18	
EGP5/AIU	crosslinking	INA"	10	

9 a No available data was reported in relevant literature. The information about these LCST-type hydrogel

10 systems is partially sourced from various recent reviews focusing on "hydrogel smart windows"^{8, 23}.

11 ^b Please be aware that the cited references may not directly address the application of thermochromic

12 windows. However, it is worth noting that the LCST hydrogels developed in these studies have the 13 potential to serve as effective laminates for thermochromic windows.

14

- 16
- 17
- 18
- 19
- 20
- 20
- 21

1 Table S3 specifically examines hydrophobically modified hydrogels in their fully 2 swollen state. We also note that some hydrophobically modified hydrogels are created 3 through micellar copolymerization, which involves the use of surfactants to facilitate 4 the dispersion and dissolution of the hydrogels ²⁰. Due to the effective dispersion of 5 hydrophobic clusters, some of these gels demonstrate high transparency in their initial 6 state. However, it remains uncertain whether this transparency will be maintained when 7 the gels are equilibrated in water.

Side alky	yl chains	Average number of carbon atoms	Transparency	Reference s
	H_2N	18	Opaque, Semi-transparent	24
	∕∕)⊂o n	18 or 22	Opaque, transparent	25
	∽N_	18	Opaque	26
H ₂ N	→ o → n	16	Opaque	27
	∕∕)⊂o n	17.3 or 18	Opaque	28
HO	→ o → n	18	Opaque	29
0 0 0 0 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 0 5 5 0		~10	Semi-transparent	30
	∕⁄)⊂0 	18	Opaque	31
−(−) stat. N, OH		8	Transparent	32, 33

8 **Table S3.** Typical hydrophobic association hydrogels and their optical properties

	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	4	Τ	
	Ţ	4	Iransparent	This work
-	\			
2				
3				
4				
5				
6				
7				
8 0				
10				
11				
12				
13				
14				
15				
16				
l / 19				
10				
20				
21				
22				
23				
24				
25				
26				
27				
28 29				
30				
31				
32				
33				
34				
35				
36				
5/ 38				
30 30				
57				

1Supplementary Note 2. Phase diagram of hydrophobically modified hydrogels2and the reversibility of their LCST phase transfer.

3 LCST behavior can be described as the thermally induced demixing of one 4 homogeneous phase into two phases: one phase consists of a low polymer fraction (Φ_1) 5 (or even pure water), and the other phase has a high polymer fraction (Φ_2). 6 Thermodynamically, a phase diagram in **Figure S1** is commonly used to delineate the 7 relations between temperature (*T*) and the composition of polymer-water mixtures (Φ). 8 Phenomenally, the phase transition is straightforward to characterize: the cloud point 9 describes a characteristic change in turbidity upon the formation of polymer aggregates 10 large enough (with fraction of Φ_1) to scatter light. а

2 Figure S1. Phase diagram coupled with the Gibbs free energy to illustrate the 3 partially irreversible (a) and fully reversible (b) LCST phase transfer. The phase 4 diagram depicts the temperature (T, vertical coordinate) vs. polymer–water composition 5 (Φ) (horizontal coordinate) phase diagram with upper miscibility gap. The position of

the demixing line is indicated, which set a boundary between homogeneous region 1 (shadowed with gradient grey color) and demixing region (shadowed with gradient 2 3 orange color). In this diagram, the colorful circles (••) represent the T- Φ point of 4 different states of the hydrogel. The initial state can be in out-of-the equilibrium (in **a**) 5 or equilibrium state (in **b**). The initial temperature is set as T_L , the polymer rich and polymer poor phase in initial gel has the compositions of Φ_{1s} and Φ_{2s} , respectively. 6 7 Thus, the circles of \bullet locate at (T_L, Φ_{ls}) and (T_L, Φ_{2s}) in two phase regions with shallow phase separation depth. This state is in out-of-the equilibrium state (in a) or in 8 equilibrium state (in b). During hydrothermal treatment, the temperature of the 9 hydrogel jumps from $T_{\rm L}$ to $T_{\rm H}$ (represented by the orange arrow), shifting the state at 10 (T_L, Φ_{1s}) and (T_L, Φ_{2s}) to (T_H, Φ_{1s}) and (T_H, Φ_{2s}) . As the hydrogel is aged in hot water 11 (represented by the red arrow), its composition gradually approaches the binodal line 12 13 and experiences time-dependent pore growth due to the slow dynamics of the polymer-14 rich phase (which is close to vitrification). For example, after aging in hot water, the state at (T_{H}, Φ_{1s}) and (T_{H}, Φ_{2s}) shifts to (T_{H}, Φ_{1d}) and (T_{H}, Φ_{2d}) (as indicated by •) with 15 16 relatively deeper phase separation depth. In **a**, after cooling from $T_{\rm H}$ to $T_{\rm L}$ (represented 17 by the green arrow), the state (T_H, Φ_{1d}) and (T_H, Φ_{2d}) points become (T_L, Φ_{1d}) and (T_L, Φ_{1d}) Φ_{2d}) without alternation on compositions of two phases, suggesting the irreversibility 18 of the hydrothermally induced phase separation. The phase diagram is correlated with 19 20 a graph describing its Gibbs free energy vs. composition to formulate the reversibility 21 of the hydrothermally induced phase separation. Clearly, the morphology formed at $T_{\rm H}$ can be retained as the temperature lowers from $T_{\rm H}$ to $T_{\rm L}$ (represented by the green 22 arrow), due to the reduction in Gibbs energy ($\Delta G < 0$). The cloud line corresponds to a 23 24 critical fraction of polymer-rich phase (Φ_c). When the fraction of polymer-rich phase (Φ_2) in a gel exceeds Φ_t , the gel turns turbid. 25

26 In principle, the LCST phase diagram can be modeled theoretically via Flory-Huggins solution theory within the liquid-liquid equilibrium thermodynamic framework.³⁴ This 27 theory constitutes a set of ΔG (Gibbs free energy)- Φ curves (Figure S1). At a given 28 29 temperature, the formed two phases have two extreme points at specific Φ points. These points stand for the equilibrium state. All equilibrium points constitute a binodal curve 30 31 (labeled as demixing curve in Figure 1b) that segment the single-phase regime from the two-phase regime in a T- Φ plot. When the state transition of a hydrogel is reversible 32 only if such transition evolves along this binodal curve. Otherwise, this state transition 33 can be route-dependent and irreversible. Furthermore, the emergence of turbidity along 34 35 the phase separation depth is the macroscopic expression of light scattering at the interface of biphasic interface when the size of polymer-rich phase is comparable to the 36 wavelength of visible light. This critical size can correspond to a composition point 37 (Φ_t) . When the fraction of polymer-rich phase exceeds $\Phi_t (\Phi_2 < \Phi_t)$, the gel turns turbid. 38

Based on this general argument, the LCST behavior of a gel can be characteristic of
 reversible transparency-to-opacity transfer when three prerequisites are met: (1) it
 should be transparent at low-temperature state; (2) the initial state should be in
 (quasi)equilibrium state; (3) the composition point at high-temperature state should
 exceeds critical points of turbidity.

Although we recently demonstrate some transparent versions of hydrophobically 6 7 modified hydrogels,³² but they rarely demonstrated reversible LCST phase transfer. Such rarity can be ascribed to the initial out-of-the equilibrium state due to the network-8 forming process. For example, to prepare hydrophobic association hydrogel, a typical 9 10 process is to expose a homogeneous solution of non-water-soluble polymer to water vapor. In this process, polymer undergoes gelation through solvent-water exchange. 11 12 Good solvent for polymer is displaced by water, which is a poor solvent and can plasticize the polymer and mediate network-forming phase separation. This is an 13 14 nonequilibrium process as the phase separation process can be arrested in an intermediate state due to vitrification or gelation.³⁵ Therefore, the as-prepared 15 hydrophobic association hydrogel is usually in an out-of-the equilibrium state, which 16 prohibits the thermal reversibility, as elucidated by a phase diagram with upper 17 miscibility gap (origin region) correlated to the Gibbs free energy for the mixing of a 18 binary system. Heating increases the phase separation depth with further demixing of 19 phases. The phase-separated structure formed after heating can be preserved even after 20 its cooling due to the reduced Gibbs free energy (Figure S1). 21

- 22
- 23
- 24
- 25

Supplementary Note 3. Phase diagram of hydrophobically modified hydrogels and the kenetics of their LCST phase transfer.

In addition of irreversibility, hydrophobically modified hydrogel (transparent version) 3 4 could also suffer from sluggish switch between transparent and turbid state. This issue 5 is originated from the formation of a vitrified-polymer-dense phase during LCST phase transfer. A representative feature for this system is the liquid-liquid demixing 6 intercepted by the glass transition of the polymers at a so-called Berghmans' point 7 8 (Figure S2).³⁶ Here, we further schematically illustrate the thermodynamic origins for 9 this retarded coarsening effect from the relation between the binodal curve and the curve of glass transition temperature (T_g) versus polymer volume fraction (Φ) in Figure 10 S2. We reason that during the whole phase transfer process, the observed temperatures 11 are much higher than the T_g of polymer-rich domain of FIRST systems, thus the 12 mobility of chains is not significantly constrained, and the coarsening of phase 13 separated domains can be quickly accomplished. This reasoning emphasizes the 14 significance of PVB's high hydrophilicity in the FIRST hydrogel. Indeed, when we 15 elongate the butyral side chains (C4) to octyl side chains (C8) in the initial polymer and 16 17 maintain the acetalization degree of 30mol%, the thermally induced phase separation becomes completely irreversible (Video S1). The C8-length side chains exhibit greater 18 19 hydrophobicity, leading to the formation of glass-like domains due to their relatively stronger interactions at application-related temperatures. By contrast, in concomitant 20 21 with the phase separation process, T_g of polymer-rich domain of C8-based systems increase more rapidly than the binodal curve with the polymer volume fraction, thus, 22 23 the observed temperatures can be below the T_g of polymer-rich domain of C8-base 24 system. Thus, the phase separation will be kinetically arrested prior to complete equilibrium, exhibiting very slow coarsening rate. 25

Figure S2. An illustrative T (temperature)- Φ (composition) phase diagram of solvent-2 polymer demixing interferes with the curve of glass transition of the hydrogels. The 3 4 purple (-) and blue (-) solid curve are the binodal curves for C4 and C8 based 5 hydrophobically modified hydrogels, respectively. The purple and blue broken lines are 6 the theoretical extrapolation of the glass transition lines for C4 and C8 based 7 hydrophobically modified hydrogels, respectively. The cross over point of the two 8 curves is the Berghmans' point. The initial state of C4 and C8-based hydrogel is in $(T_L,$ 9 Φ_{C4}) and (T_L, Φ_{C8}) as indicated by • and •, respectively. Since the C4 is much more 10 hydrophilic than that of C8, therefore, the C4-based hydrophobically modified hydrogel should have lower averaged volume fraction of polymer, with milder phase contrast. In 11 12 concomitant with the phase separation process, the $T_{\rm g}$ of polymer-rich domain also 13 increases. We have previously evidenced that the glass transition lines for C4-based 14 hydrogel should be always higher than that of C8-based hydrogel at the same 15 composition (Macromolecules 2021, 54, 13, 5962-5973). Thus, the observed 16 temperatures for phase separation can be much higher than the T_g of polymer-rich 17 domain of C4-based systems. The mobility of chains would not be significantly 18 constrained, and the phase separation can be rapidly completed to reach the spinodal 19 line (as indicated by \bullet). By contrast, T_g of polymer-rich domain of C8-based systems 20 increase more rapidly than the spinodal curve with the polymer volume fraction, thus, the observed temperatures can be below the $T_{\rm g}$ of polymer-rich domain of C8-base 21 22 Thus, the phase separation will be kinetically arrested prior to complete system. equilibrium (as indicated by •), exhibiting very slow coarsening rate. This kinetically 23 24 arrested behavior empowers tunability on void-phase size.

- 25
- 26
- 27
- 28
- 29
- 30
- 31

1 Supplementary Note 4. The appraisal standards for the FIRST features.

2 Performance index is proposed to quantitatively compare the FIRST features among 3 different hydrogel systems. Indexes: 1: poor; 5: outstanding. The appraisal standards 4 from level 1 (poor/lowest) to level 5 (outstanding/highest) are detailed in Tables S4-5 S8. It's crucial to highlight again that our evaluation is limited to hydrogels in a semi-6 solid state. Hydrogels in liquid or suspension states are not considered in this 7 analysis, aligning with the specific focus of this manuscript.

8 Frost resistance: Table S4 summarizes the freeze resistance scores of an array of 9 typical thermos-responsive hydrogels. Frost resistance refers to the antifreezing 10 performance of gel smart windows at minus zero degrees Celsius. Generally, gel smart 11 windows with water as dispersion medium are difficult to maintain high light 12 transmittance and mechanical properties in low temperature climate, which makes the 13 concept of multi-season general smart windows unable to be well implemented.

14 Unlike water, typical cryogenic protective agents, such as inorganic salts or polyols, 15 can effectively prevent the formation of overlarge ice-crystal by combining with ice 16 nucleating agents (anti-nucleating agents) and/or interacting with ice-like surfaces, 17 thereby further avoiding the loss of optical clarity and mechanical stretchability to a 18 large extent. For example, smart windows with water as the dispersion medium are 19 prone to freeze at low temperatures, leading to window cracking and whitening, which 20 seriously affects their large-scale application in real life. Therefore, if inorganic salt solutions or polyols are used as dispersion media while retaining thermal responsive 21 22 properties, such gel smart windows will show advantages in multi-climate applications.

- 23 Table S4. Appraisal standards and scoring tables for the frost resistance of typical 24
 - LCST hydrogels that potential useful for thermochromic windows.

		Antifreezing		
Hydrogel	Sample	(°C)	Scor	Reference ^b
			e	
	PNIPAm	Na ^a		37
	P(NIPAm-co-DMAA)	Na ^a		
	PNIPA-PDMA	Na ^a		4
	PNIPAm/POSS	Na ^a		6
PNIPAm	hybrid			
based	PNIPAm/PEG	Na ^a		9
hydrogel	PNIPAM/PEG/PANI	Na ^a	4	
	PNIPAm-GO composite	Na ^a		10
	PNIPAm-HPC composite	Na ^a	-	11
	Poly (N-	Na ^a		38
	isopropylacrylamide-co-			
	acryloylaminozaobenzene			

	PNIPAm/water/glycerol	-18 °C		39
	composite			
	PNIPAm/ Ethyl alcohol	-20 °C		40
	composite			
HPC based	HPC-acrylamide	Na ^a		41
hydrogel	HPC imbedded within PAM-	Na ^a		42
	PAA		3	
	HPC/PAA	Na ^a		43
	HPC/water/glycerol	-10 °C		44
	composite			
PNVCL	PNVCL	Na ^a		45
(poly(N-vinyl	PNVCL-Clay composite	Na ^a		
caprolactam))	PNVCL-titania composite	Na ^a	1	46
based	H-ESO-HEC/poly(NVCL-	Na ^a		12
hydrogel	co-DMAA)			
POSS based	PU/POSS	Na ^a	1	15
hydrogel				
Other	(PTH)-PAAm	Na ^a		47
thermores-	PEG-ELP hybrid	Na ^a	_ \ _	48
hydrogel				
FIRST	PVB/LiCl/water composite	-15 °C	4	This work

1 a. No available data was reported in relevant literature.

b. Please be aware that the cited references may not directly address the application of thermochromic
windows. However, it is worth noting that the LCST hydrogels developed in these studies have the
potential to serve as effective laminates for thermochromic windows.

1

2 Isochoric property: For thermochromic windows, the LCST gels' dimensional 3 stability is a nontrivial issue. It is important to note that volume reduction is not unique 4 to LCST gels during the phase transition, as this transition invariably coincides with the 5 expulsion of liquid. Existing literature suggests potential strategies to mitigate volume 6 shrinkage, such as reducing enthalpy changes during phase transition or increasing the 7 polymer fraction,⁴⁹ although the effectiveness of these approaches needs to be 8 individually validated.

10 Ideally, hydrogels used in this context should exhibit inertness to temperature 11 variations, as any shrinkage would compromise their ability to shield light effectively. 12 The literature reports a wide range of phase separation-induced volume shrinkage for 13 LCST hydrogels, expressed as $1-(V_{T>LCST}/V_0)$, spanning from 1% to 90%. A qualitative 14 scoring system is applied, where systems with volume shrinkage below 10% are rated 15 as 5, those with shrinkage between 10% and 20% as 4, between 20% and 40% as 3, 16 between 40% and 60% as 2, and over 60% as 1.

18 **Table S5** summarizes the isochoric property scores of the thermo-responsive hydrogels

19 for thermochromic windows. We should emphasize again that we focus on hydrogels

20 in semi-solid state.

Hydrogol	Comple	Volume shrinkage	Saara	Dafi
Hydrogel	Sample	(%)	Score	Kei"
	PNIPAm	Significant syneresis (present in Figure S3 in the cited paper)	1	3
	P(NIPAm-co-DMAA)	No significant syneresis	5	
	PNIPA-PDMA	No significant syneresis	5	4
PNIPAm based hydrogel	PNIPAm-PDMA	No significant syneresis	5	5
	PNIPAm/POSS hybrid	Significant syneresis (present in Figure 5 in the cited paper)	1	6
	PNIPAm/PEG	Significant syneresis (about 37%- as present in Figure 5 in the cited paper)	1	9
	PNIPAM/PEG/PANI	Significant syneresis (about 37-50% as present in Figure 5 in the cited paper)	2-3	
	PNIPAm-GO composite	Significant syneresis (about 40-65% as	1	10

21 Table S5. Appraisal standards and scoring tables for the isochoric property of LCST22 type hydrogels.

		present in Figure 5 in the cited paper)		
	PNIPAm-HPC composite	Not significant	5	11
	Poly (<i>N</i> - isopropylacrylamide- <i>co</i> - acryloylaminozaobenzene,	Significant syneresis (about 94-96% as present in Figure 1 in the cited paper)	1	13
Average			~3	
	HPC-acrylamide hydrogel	No significant syneresis		41
HPC based	PNIPAm-HPC composite	No Significant syneresis	3	11
nydroger	HPC imbedded within PAM-PAA	No Significant syneresis	5	17
Average			5	
	PNVCL	Significant syneresis (about 72% as present in Figure 7 in the cited paper)	1	16
PNVCL (poly(<i>N</i> -vinyl	PNVCL-Clay composite	Significant syneresis (about 77%-83% as present in Figure 7 in the cited paper)	1	
caprolactam)) based hydrogel	PNVCL-titania composite	Significant deswelling (no qualitative data for volume shrinkage is available, but data in Figure 3 in the cited paper demonstrate significant deswelling)	2	50
	H-ESO-HEC/poly(NVCL- co-DMAA)	Covalent crosslinking	1	12
Average			1.3	
POSS based hydrogel	PU/POSS	No significant shrinkage but obvious deformation upon heating (as present in Figure 2a in the cited paper)	5	15
Other thermores-	(PTH)-PAAm	No significant syneresis		47
ponsive hydrogel	PEG-ELP hybrid	No significant syneresis		48
FIRST	PVB/LiCl/water composite	No significant shrinkage	5	This work

¹ a. Please be aware that the cited references may not directly address the application of thermochromic

3 potential to serve as effective laminates for thermochromic windows.

4 Hydrogel Volume Measurement Protocol for FIRST hydrogel: The setup is 5 schematically illustrated in Figure S3. Initially, a FIRST hydrogel was immersed in

6 water at specific temperatures of x $^{\circ}$ C (*e.g.*, 15 $^{\circ}$ C (below LCST) or 40 $^{\circ}$ C (above

² windows. However, it is worth noting that the LCST hydrogels developed in these studies have the

1 LCST)) for a duration of about one hour. Subsequently, the sample was positioned on 2 a weighing tray in ambient air, and the mass was determined to be m_1 . Continuing the 3 procedure, this sample was positioned on a submergence tray immersed in water at the 4 temperature of x °C. The mass was then measured and recorded as m_2 . Obviously, the 5 value of $(m_1-m_2) \times g$ (g is gravitational acceleration constant) corresponds to the 6 buoyant force exerted. This buoyant force is equilvalent to $V_x^{o_C} \times \rho_{water} \times g$, where $V_x^{o_C}$ 7 is the volume of FIRST hydrogel at temperature of x $^{\circ}$ C, ρ_{water} is the density of water.

8 Thus, $V_x^{o}C$ of FIRST hydrogel at at temperature of x ^{o}C can be calculated using equation

 $V = \frac{m_1 - m_2}{m_1 - m_2}$

Equation

9 as follows:

$$V_{x^{\circ}C} = \frac{m_1 - m_2}{\rho_{water}}$$
10 S1

$$V_{wither} = \frac{m_1 - m_2}{\rho_{water}}$$

$$V_{wither} = \frac{m_1 - m_2}{\rho_{water}}$$

$$V_{x^{\circ}C} = \frac{m_1 - m_2}{\rho_{water}}$$

12 Figure S3. Schematic Diagram and Principle of Buoyancy-Based Hydrogel Volume

13 Measurement Apparatus.

15

14 Accordingly, the volume shrinkage can be calculated by the following equation:

Volume shrinkage rate =
$$\frac{V_{x^{\circ}C} - V_{15^{\circ}C}}{V_{15^{\circ}C}}$$
 Equation S2

16 Recyclability: Considering the potential of massive consumption, recyclability of 17 laminates for thermochromic windows is significant to reduce the environmental 18 impact of the building industry and relieves the dependence on the fossil-fuel-based 19 raw materials.

20 For covalently crosslinked hydrogels, the permanent networks prevent recycling 21 because they cannot be dissolved by solvents or remolded by conventional processing 22 methods without degradation. Again, some polymer systems can be readily recycled 23 through so-called dynamic-covalent-bond mechanism. However, their realization 24 usually requires relatively harsh conditions, such high temperatures far above the 1 boiling point of water and/or the presence of hygroscopic catalysts. These conditions

2 can be incompatible with hydrated nature of hydrogels. We therefore score the

3 recyclability of this covalently crosslinked hydrogels as 0-1.

4 By contrast, most physically crosslinked hydrogels can be readily recycled at the end 5 of its lifespan through dissolution, processing, and post-crosslinking manipulation. For 6 example, the disposed FIRST hydrogel can be dried, redissolved in solvents and 7 remodeled into a freshly new sample. Thus, recyclability of these physically crosslinked 8 hydrogels generally ranks a high level. For some of them, recycling requires to be 9 conducted at elevated temperatures (e.g., PVA hydrogels), or multi-step related to the 10 destruction/reconstruction of the crosslinking knots (e.g., hydrogel crosslinked by metal 11 coordination bonds). After such multi-step process, it is difficult to ensure that the 12 recycled samples have identical components to that of fresh ones. In general, the 13 recyclability of physically crosslinked hydrogels is scored as 4-5.

14 **Table S6.** Appraisal standards and scoring tables for the recyclability of the 15 thermoresponsive hydrogels that potentially useful for thermochromic windows.

	Hydrogel	Crosslinking	Recyclability	Ref ^a
		Covalent	1	
		crosslinking	1	3
	$P(NIPAM_{co}-DMAA)$	Covalent	1	
		crosslinking	1	
PNIPAM-based hydrogel	ΡΝΙΡΔ-ΡΓΜΔ	Covalent	1	4
		crosslinking	1	
	ΡΝΙΡΔΜ-ΡΓΙΜΔ	Covalent	1	5
		crosslinking	1	
	PNIPAM/POSS	Covalent	1	6
	hybrid	crosslinking	1	
	$PNIP \Delta M/VO_{2}$	Covalent	1	7
		crosslinking	1	
	PNIPAM/VO2@SiO2	Covalent	1	8
		crosslinking	1	
	PNIPAM/PEG	Covalent	1	
		crosslinking		9
	DNIDAM/DEC/DANI	Covalent	1	
		crosslinking	1	
	PNIP A M-GO	Covalent	1	10
	1 NII AM-66	crosslinking	1	
		Covalent	1	11
	PNIPAM-HPC composite	crosslinking	1	
	Poly (NIPAM -co-	Covalent		12
	acryloylaminozaobenzene,	crosslinking	1	15
Average			1	
	H-ESO-HEC/poly(NVCL-co-	Covalent	1	12
	DMAA)	crosslinking	1	12
PNVCL-based		Covalent	1	16
hydrogel	PNVCL	crosslinking	1	
	PNVCL-Clay composite	Physical	5 (However,	
	· · ·			

		crosslinking (Clay	the literature	
		surface)	did not	
			demonstrate	
			the	
			recyclability)	
Average			2.5	
HPC-based	HPC imbedded within PAM-	Covalent	1	17
hydrogel	PAA	crosslinking	1	17
DOCC	DLI/DOSS	Covalent	1	15
P055	PU/POSS	crosslinking	1	15
Other	(PTH)-PAAm	Covalent	\backslash	47
thermores-		crosslinking	\sim	
ponsive	PEG-ELP hybrid	Covalent	-	48
hydrogel	-	crosslinking		
		-	\sim	
Others	ECD5/ATO	Covalent	1	18
Others	EGF3/AIO	crosslinking	1	10

a. Please be aware that the cited references may not directly address the application of thermochromic windows. However, it is worth noting that the LCST hydrogels developed in these studies have the potential to serve as effective laminates for thermochromic windows.

4 Scalability: It's imperative to establish the capacity for large-scale production of the
5 LCST polymer system, aligned with the demands of building-scale applications. This
6 endeavour mandates a comprehensive evaluation of variables spanning chemical
7 engineering, health, and market viability.

Scalability refers to the ability of a process to handle an increasing amount of work or 8 demand. Table S7 summarize the scalability scores of the thermo-responsive hydrogels 9 10 for thermochromic windows. We mainly compare the industrial annual capacity, material preparation process, and whether it is conducive to large-scale preparation and 11 12 commercialization. PNIPAm and PNVCL are typically synthesized by free radical polymerization of nonvolatile monomers. At least, two primary challenges should be 13 addressed in achieving industrial scalability for these polymers. One challenge is the 14 15 well-recognized occurrence of chain transfer reactions, which result in a low fraction of chemical covalent cross-links even without the presence of crosslinking agents-a 16 phenomenon often referred to as the "self-cross-linking" effect. ^{51, 52} These difficulties 17 in controlling crosslinking hinder the precise control of product quality on an industrial 18 19 scale. Additionally, it is fundamental to acknowledge that the complete conversion of 20 monomers in radical polymerization is inherently difficult to achieve. Residual monomers (e.g., NIPAM) and crosslinkers are notoriously challenging to eliminate, 21 while these monomers can be toxic 55, which raises health concerns, particularly in 22 23 construction-related applications. Such issues become even more critical in the event 24 of leakage. As a result, the score of scalability for these polymers is 1.

On the other hand, hydroxypropyl cellulose is synthesized through a more stable and straightforward process involving the alkalization of cellulose, reaction with propylene oxide, and neutralization with hydrochloric acid, followed by organic solvent precipitation, washing, and drying, receiving a score of 3 for its production feasibility. Meanwhile, POSS has a complex and lengthy synthesis process, making it unsuitable for large-scale industrial production, earning it a score of 1. PVB, as a traditional bulk chemical, can be synthesized economically through acetal reaction catalyzed by inorganic acid in an aqueous phase, making it suitable for mass production.

9 **Table S7** Appraisal standards and scoring tables for the scalability of the thermo-10 responsive hydrogels that potentially useful for thermochromic windows.

Hydrogel	Sample	Polymer raw materials annual industrial output (tons)	Raw materials preparation method	Preparation process	Score	Ref.ª			
	PNIPAM				_	54, 55			
	PNIPAM/ VO ₂				_	7			
PNIPAm	PNIPAM/VO ₂ @SiO ₂	Non-large-scale production	_ Non-large-scale	Free radical	Free radical	Monomer in situ	Monomer in situ		8
based hydrogel	P(NIPAm-co- DMAA)		n reaction	polymerizatio n	1-2	37			
	PNIPAm- HPC composite				-	11			
	НРС			Gelling forming agent to promote gelation or Stir dispersion		56-59			
HPC based hydrogel	HPC/PAA	Non-large-scale production	Etherification reaction	Stir dispersion	3	43			
	PNIPAm- HPC composite			Monomer in situ polymerizatio n		11			
PNVCL based hydrogel	PNVCL	Non-large-scale production	Batch emulsion polymerizatio n	Monomer in situ polymerizatio n	1-2	60, 61			

POSS based hydrogel	PU/POSS	Non-large-scale production	Complete hydrolysis method	Monomer in situ polymerizatio n	1	15
Other thermores-	(PTH)-PAAm	Non-large-scale production	Free radical polymerizatio n reaction	Monomer in situ polymerizatio n		47
ponsive hydrogel	PEG-ELP hybrid	Non-large-scale production	Free radical polymerizatio n reaction	Monomer in situ polymerizatio n		48
FIRST	PVB/LiCl/wat er composite	800,000	Acetal reaction	Non-solvent exchange	5	This work

a. Please be aware that the cited references may not directly address the application of thermochromic
 windows. However, it is worth noting that the LCST hydrogels developed in these studies have the
 potential to serve as effective laminates for thermochromic windows.

- 4
- •
- 5
- 6

7 Toughness: The incorporation of tough mechanics offers additional benefits when
8 considering thermochromic hydrogel as laminate for windows. These qualities enable
9 the hydrogel to effectively resist crack propagation and potentially make it reusable, in
10 situations where windows shatters.

11 Toughness is a measure of a hydrogel's ability to resist fracture or failure when 12 subjected to an external force or stress. **Table S8** summarizes the toughness scores of 13 the thermo-responsive hydrogels for thermochromic windows. It is often associated 14 with the strength. Toughness can be estimated by measuring the fracture energy which 15 is in the unit of joules per cubic meter (J/m²). The fracture energy of a material is 16 determined by subjecting it to a controlled stress or load, and measuring the amount of 17 energy absorbed by the material before it fractures or breaks. The higher the fracture 18 energy of a material, the more energy it can absorb before failing, and the tougher it is 19 considered to be. As shown in the above table, the fracture stress of FIRST hydrogel 20 was 100 times higher than that of HPC hydrogel, and the elongation at break was nearly 21 40 times that of PNIPAm hydrogel. This excellent mechanical property makes the 22 FIRST hydrogel have a far-reaching application prospect in the field of intelligent 23 response hydrogel. Although POSS-based hydrogels showed good elongation, the 24 fracture stress was relatively small, so they got 4 points. Overall, the FIRST hydrogel 25 gets 5 points on this board.

- 1 Table S8. Appraisal standards and scoring tables for the toughness of thermoresponsive
- 2 hydrogels that potentially useful for thermochromic windows.

Hydrogel	Sample	Fracture energy (kJ/m ²)	Work of extension (kJ/m ³)	Tensile strength (kPa)	Strain (mm/mm)	Score	Ref ^b
	PNIPAm	NA ^a	NA ^a	~ 4	~ 0.52		62
PNIPAM based hydrogel	PNIPAm- PDMA	~ 0.8	NAª	~ 70	~ 9	1~2	63
	PNIPAm-HPC composite	NAª	~ 120	~ 5.5	~3.6		11
	HPC	NAª	NA ^a	NAª	NAª		64
HPC based hydrogel	HPC/PAA	NA ^a	NAª	NAª	NA ^a	0~1	43
	PNIPAm-HPC composite	NAª	~ 120	~ 5.5	~3.6		11
PNVCL based hydrogel	PNVCL	NAª	NAª	NAª	NAª	1	60, 65, 66
POSS based hydrogel	PU/POSS	NAª	NAª	~ 20	~110	4	15
Other thermores -ponsive hydrogel	PNIPA-PDMA (Side chain- PNIPA)	~ 0.03 (20 °C) ~ 0.32 (60 °C)	NAª	~4 (20 °C) ~20 (60 °C)	~ 2 (20 °C) ~ 3.3 (60 °C)		4
	PNIPA-PDMA (Side chain- PDMA)	~ 0.02 (20 °C) ~ 0.13 (60 °C)	NAª	~ 2 (20 °C) ~ 15 (60 °C)	~ 1.4 (20 °C) ~ 1.5 (60 °C)		
	PAAc/CaAc	NAª	149 (25 °C) 781 (70 °C)	~ 100 (25 °C) ~ 15000 (70 °C)	~ 6.5 (25 °C) ~ 0.7 (70 °C)		14
	(PTH)-PAAm	NAª	~300	~ 80	~ 8		47
	PEG-ELP hybrid	NAª	NAª	NAª	NAª		48
FIRST	PVB/LiCl/water composite	~ 70	12153	~ 1200	~ 21	5	This work

3 a. No available data was reported in relevant literature.

4 b. Please be aware that the cited references may not directly address the application of thermochromic
 5 windows. However, it is worth noting that the LCST hydrogels developed in these studies have the
 6 potential to serve as effective laminates for thermochromic windows.

Supplementary Note 5. Polymer solubility analysis.

2 In this study, we utilized the solvent interaction test, also known as the solubility test, 3 to investigate the interaction between different acetalization degrees of PVB samples 4 and solvents. The results of these tests were further analyzed using the HSPiP software, 5 developed by C. M. Hansen and widely used for determining the HSPs (Hansen Solubility Parameters). To characterize the solubility, the PVB samples were exposed 6 to 30 different solvents. Each sample and the corresponding test solvent were combined 7 in a sealed vial at a concentration of 100 mg/mL and maintained at 20 °C for 24 hours 8 until equilibrium was reached. The interaction between the samples and solvents was 9 evaluated using a method established by Hansen, which categorized the results as 10 follows: 1 – Soluble, 2 – Almost soluble, 3 – Strongly swollen with slight solubility, 4 11 - Swollen, 5 – Little swelling, 6 – No visible effect.⁶⁵ The solubility test results of the 12 polymer samples in the 30 solvents were used directly as input data for the HSPiP 13 software to calculate the HSPs values. A three-dimensional solubility sphere can be 14 obtained by the HSPiP software. Its center represents the polymer, and its radius is 15 defined as the radius of interaction (R_0) . The differences of HSPs between the various 16 17 solvents and the polymer (R_a) can be calculated by Equation S3,

18
$$R_a = \left[4\left(\delta_d^s - \delta_d^p\right)^2 + \left(\delta_p^s - \delta_p^p\right)^2 + \left(\delta_h^s - \delta_h^p\right)^2\right]$$
 Equation S3

19 where superscripts S and P indicate solvent and polymer, respectively. If R_a is smaller 20 than R_o , it signifies that the solvent is likely to dissolve or strongly swell the polymer. 21 Conversely, if R_a is equal to or greater than R_o , it suggests that the solvent is unable to 22 dissolve the polymer or that there is little to no noticeable interaction between them.

23

2 Figure S4. Solubility spheres for the PVB samples with indicated molar content of

3 butyral content.

1

4

Molar content of						
Butyraldehyde groups (mol.	10	20	30	40	60	80
%)						
Acetic anhydride	6	6	6	4	2	1
Acetone	6	6	5	4	2	1
Acetonitrile	4	4	4	5	6	6
Dimethyl Formamide	4	3	1	1	1	1
Dimethyl Sulfoxide	1	1	1	1	1	4
Ethanol	6	5	4	4	2	1
Ethyl Acetate	6	6	5	5	2	1
Isopropanol	6	6	5	4	2	1
Lactic Acid	6	6	6	6	5	3
N-Methyl-2-Pyrrolidone	1	1	1	1	1	1
Octane	6	6	6	6	6	6
1-Propanol	6	6	5	5	2	1
Tetrahydrofuran	6	6	5	5	3	1
Toluene	6	6	5	4	3	3
Water	1	2	3	5	6	6

Table S9. The solubility tests results of PVB samples in 16 solvents.

5 1 – Soluble, 2 – Almost soluble, 3 – Strongly swollen with slight solubility, 4 – Swollen,

 $6 \quad 5 - Little swelling, 6 - No visible effect.$

- 7
- 8

1 Supplementary Note 6. Kinetics of polyvinyl butyral synthesis, and the molecular 2 structure and purity.

3 Scheme S1 illustrates the microscopic mechanism of acetalization kinetics in 4 homogeneous condition. The reaction between PVA and *n*-butanal can be simplified 5 into three steps: including the protonation reaction of *n*-butanal (Equation S4), the 6 hemiacetal generation reaction (Equation S5), and the acetal generation reaction 5 (Equation S6).

7 (Equation S6).

9 Scheme S1. Reaction mechanism for PVB synthesis. As indicated in Scheme S1, d
10 represents *n*-butanal, D⁺ represents the protonated butanal, A represents single
11 hydroxyl group in the polymer, S⁺ represents the hemiacetal group,
12 B⁺ represents the charged acetal group, and B represents the acetal group.

13
$$H^{+} + dD^{+} \xrightarrow{k_{1}} \qquad \qquad \text{Equation S4}$$

14
$$A + D^+ S^+ \xrightarrow{k_2}{k_{-2}}$$
 Equation S5

15
$$\overline{A} + S^+ B + H^+ + S^+ \underline{k_3}$$
 Equation S6

Where A specifically represent the neighboring hydroxyl groups to the hemiacetal. 1 Among these reactions, the protonation reaction (Equation S4) is usually considered 2 instantaneous, which means that the reaction equilibrium is established immediately.⁶⁶ 3 Here after, c_i is the concentration of certain species (i = A, d, D⁺, S⁺, B), mol/L. K_I is 4 equilibrium constant of the first step reaction, L/mol. k_1 is the rate constant for the first 5 step reaction, L/(mol•s). k_2 is the rate constant for the second step reaction (hemi-acetal 6 generation), L/(mol•s). k_{-2} rate constant for the second reward step reaction (hemiacetal 7 degeneration), s⁻¹. k_3 is rate constant for the third step reaction (acetal generation), s⁻¹. 8

9 Thus, the concentration (c) of reactants in **Equation S5** follows the equation:

10
$$c_{D^+} = K_1 c_{H^+} c_d$$
 Equation S7

11 If a large amount of acidic catalyst is used in the experiment, the concentration of proton 12 (c_{H^+}) can be considered constant and the concentration of $D^+(c_{D^+})$ depends only on 13 the concentration of *n*-butanol (c_d). For the acetal formation reaction (**Equation S6**), 14 we denote the hydroxyl group as \overline{A} to specifically denote the hydroxyl group adjacent 15 to the hemiacetal. Since only the adjacent hydroxyl groups can participate in the 16 reaction, and therefore, acetal formation is an intramolecular reaction. According to 17 Equation S7, the reaction rates of main components in this system can be described as:

18
$$-\frac{ac_{A}}{dt} = k_{2}K_{1}c_{H^{+}} - k_{-2}c_{s^{+}} + k_{3}c_{s^{+}}$$
 Equation S8 dc_{d}

19
$$-\frac{dc_d}{dt} = k_2 K_1 c_d c_{H^+} - k_{-2} c_{s^+}$$
 Equation S9

20
$$-\frac{dc_{s^{+}}}{dt} = -k_2 K_1 c_A c_{H^{+}} c_d + k_{-2} c_{s^{+}} + k_3 c_{s^{+}}$$
 Equation S10

21
$$-\frac{dc_B}{dt} = -k_3 c_{s^+}$$
 Equation S11

- 22
- ____
- 23

2 The hemiacetal group only reacts with one of neighboring hydroxyls, making the 3 reaction rate independent of free hydroxyls in the solution. By appropriately controlling 4 experimental conditions, including the relatively less amount of butyraldehyde (low 5 acetylation degree) and very short reaction times (early stage of the reaction), it is 6 reasonable to neglect the reverse reaction of **Equation S9**. Thus, the consumption of 7 butyraldehyde can be estimated:

8

1

$-\frac{dc_d}{dt} \approx k_2 K_1 c_{A-0} c_d c_{H^+}$ Equation S12

9 where $c_{A,0}$ is the initial concentration of hydroxyl in reaction mixture. For more general 10 situations where all of the component concentrations can be expressed as functions of 11 time, the rate constants of k_{-2} and k_3 can be fit using the above differential equations.

12 During the experiment, we purposely set ${}^{c}{}_{H^+} \gg c_d$ and ${}^{c}{}_{A^{-0}} \gg c_d$, so we can treat both 13 ${}^{c}{}_{H^+}$ and ${}^{c}{}_{A^{-0}}$ as a constant during the reaction. So that we can determine the reaction 14 rate constant by measuring the concentration changes of butyraldehyde.

To quantify the amount of residual butyraldehyde, we sample the reaction solution at 15 different time intervals. After sampling, we adjust the pH of the reaction solutions to a 16 17 value between 6.0 and 8.0 to stop the reaction immediately. Then, acetonitrile was mediately added to the solution to precipitate the PVA. Because low acetylation degree 18 19 (less than 15%) PVB is a polar material, the product is then precipitated by adding 3-5 20 times volume of acetonitrile to the stop reaction droplet. The product is then centrifuged at 1000 rpm using a differential centrifuge, and the supernatant is taken with a syringe 21 and filtered using a filter membrane. The concentration of n-butanol in the mother 22 23 liquid is measured using a UV-vis spectrophotometer (UV-3600 Plus, SHIMADZU) after solid centrifugation of PVB, and the change in butyraldehyde concentration is 24 quantified by analyzing the characteristic absorption peak-peak intensity⁶⁶. The UV-vis 25 spectra are showcased in Figure S5. 26

1

2 Figure S5. Demonstration of quasi-homogeneous reaction process for aqueous 3 phase synthesis of polyvinyl butyral. a UV spectra for the solvent phase of the reaction system. b The intensity of the reaction extracts taken out at different times in 4 the dynamic experiment under the UV-vis spectrophotometer (UV-3600 Plus, 5 SHIMADZU). Due to the high concentration of acid catalyst in the system, the 6 concentration of butyraldehyde decreased rapidly at the beginning and remained 7 basically unchanged after 17 minutes, indicating that the reaction entered dynamic 8 9 equilibrium at this time.

10

13
Molar content of
$$PVB = \frac{[OH]_s}{[OH]_0}$$
 Equation S13

14 where $[OH]_0$ is initial molar number of -OH groups on parent PVA; $[OH]_s$ is substituted 15 molar number of -OH groups on C4-DS polymer. The $[OH]_s/[OH]_0$ can be calculated 16 based on two peaks' areas of ¹H NMR spectra: A_{12} and A_{2+4} . As shown in **Figure S6a**, 17 A_{12} is the peaks' area of protons from the terminal -CH₃ of alkyl side chain, thus the

2 substituted -OH groups on C4-DS can be calculated to be $\frac{1}{3}A_{12}$; while A_{2+4} is the peaks' 1 area of protons from all -CH- segments on the PVA backbone, which is equal to that 2 of $[OH]_0$. Therefore, 3

Molar content of
$$PVB = \frac{2}{3} \times \frac{A_8}{A_{2+4}}$$
 Equation S14

4

According to the integrated areas shown in Figure S6a, DS was calculated to be 5

approximately 0.30. b Gel permeation chromatography curve of PVB. 6

7

Figure S7. In vitro cytocompatibility assessments of the FIRST hydrogel. a 8 9 Representative bright-field and live-dead images of human embryonic lung cells (WI-38) seeded on tissue culture plates in complete medium and FIRST hydrogel. This 10 11 shows that FIRST hydrogel is less cytotoxic to WI-38 and has good biocompatibility. Scale bar = 200 μ m. **b** MTT assay of cells cultured in complete medium and in FIRST 12 13 hydrogel leaching medium after 1, 2, and 3 days of seeding. In this cytotoxicity assay, 14 representative bright field and live-dead images of WI-38 that were seeded on tissue 15 culture plates in complete medium and the FIRST hydrogel. Calcein AM (0.5 μ L/mL) 16 and PI (propidium iodide) (0.5 μ L/mL) were diluted in DPBS to form the staining 17 solution, which was added to the well after removing the culture medium. Then, the 18 cells were incubated for 30 min at 37 °C in the dark. Live (green stain) and dead (red stain) cells were imaged using an inverted fluorescence microscope (Observer 7, Zeiss, 19 20 Germany) on Days 1, 2 and 3 of culture. WI-38 was cultured in a 96-well tissue culture plate (BD Biosciences) with 5000 cells/well. The leaching medium was prepared by 21 immersing the FIRST hydrogel in complete medium at 37 °C for 48 h. The proliferation 22 23 of WI-38 was quantitatively determined by MTT assays. The absorbance was measured at 450 nm with a microplate reader on Days 1, 2 and 3 of culture. 24

25

26

2 Supplementary Note 7.A combination of multiple desirable 3 properties.

1

13

4 The design on molecular and condensed structure of PVB endow the FIRST hydrogel
5 with a rare combination of multiple desirable properties, including rapid, reversible,
6 and isochoric transparent-to-opaque transition, tough mechanics, high resilience and
7 eco-friendly processability and recyclability.

8 Haze spectra of the hydrogels film under normal incidence irradiation from 250 to 800
9 nm were monitored on the UV-vis-NIR spectrometer (Lambda 950, PerkinElmer,
10 America) with an integrating sphere. The total light transmittance and sample diffusion
11 of the sample is then measured and the haze value is calculated by the ratio of the two
12 spectra (Figure S8).

14 **Figure S8. Haze of FIRST hydrogel. a** Schematic diagram of hydrogel haze 15 measurement device. **b** Haze spectra of FIRST hydrogels before and after phase 16 transition. (The thickness of FIRST hydrogel was 300 μm).

17 As shown in Figure S8, decaying to 1.42 at 700 nm. To measure the haze with

1 spectrometer, we use an integrating sphere to illuminate the specimen diffusely; the 2 total port areas do not exceed 4.0% of the internal reflecting area of the sphere. The 3 specimen and light trap ports of the sphere is centered on the same great circle of the 4 sphere, and there is at least 2.97 rad (170°) of arc between their centers. The light exit 5 port subtends an angle of 0.14 rad (8°) at the center of the specimen port along the 6 wowing beam. Without specimen the axis of the viewing beam passes through the 7 centers of the specimen and light trap ports.

$$Haze = \frac{T_d}{T_t} \times 100\% = \left(\frac{T_4}{T_2} - \frac{T_3}{T_1}\right) \times 100\%$$
 Equation S15

9 Wherein, incident light sample (T_1) , total transmittance (T_2) , light scattering rate of the 10 instrument itself (T_3) and sample diffusion rate (T_4) are obtained using an integrating 11 sphere. This method has been widely adopted in literatures^[3,4] and recommended by 12 ASTM Committee.

13 (https://www.academia.edu/30137927/Standard_Test_Method_for_Haze_and_Lumin

14 <u>ous_Transmittance_of_Transparent_Plastics_1</u>).

15

8

16 Figure S9. Refractive index determination of FIRST hydrogels. a Refractive index

measurement scheme diagram. b Refractive index of FIRST hydrogels in the visiblewavelength band.

Figure S10. Hysteresis loop for the transmittance at 500 nm to show the LCST of
FIRST hydrogel, and transmittance derivation curves for the FIRST hydrogel
during the heating and cooling process.

2 The refractive index of our hydrogels was estimated based on the principle of light 3 propagation on medium surface and polarization of light waves⁶⁷. The setup for this 4 measurement was schematically illustrated in **Figure S8**. In general, the test hydrogel 5 was clamped between two species of glass slides with fixed thickness. Then, the light 6 is incident vertically to the surface n_k , n_b and n_s are the refractive index of air (~1), glass 7 (~1.5) and hydrogel, respectively. According to the polarization character of light, when 8 the light is incident vertically, Fresnel's formula can be simplified as

9
$$t_s = t_p = \frac{2n_k}{n_k + n_b}$$
 Equation S16

10 Wherein, t_s and t_p are the transmittance coefficient for *s* and *p* component, 11 respectively. According to the propagation characteristics of light on media surface, 12 the transmittance of air-glass interface and glass-hydrogel interface can be derived 13 as :

14
$$T_{1} = \frac{n_{b}}{n_{k}}t_{s}^{2} = \frac{4n_{k}n_{b}}{(n_{k} + n_{b})^{2}}$$
 Equation S17

15
$$T_2 = \frac{n_b n_s}{(n_k + n_b)^2}$$
 Equation S18

4n n

16 Wherein, T_1 is the transmittance on the interface between air and glass, while T_2 is 17 the interface transmittance between glass and hydrogels. Based on the measurement 18 structure designed by the experiment, when the transmitted light is detected by the 19 light detector, it has passed through the four-layer media interface of air-glass, glass-20 gel, gel-glass, and glass-air, so the transmittance *T* output by the computer can be 21 expressed as

22
$$T_2 = T_1^2 T_2^2$$
 Equation S19

23 Combining Equations S17, S18 and S19, the refractive index can be derived to be

$$n_{s} = \left(2 \sqrt{\frac{T_{1}(T_{1} - \sqrt{T})}{T}} + \frac{2T_{1}\sqrt{T}}{T} - 1\right)n_{b}$$
 Equation S20

2 Under conditions with a constant air refractive rate n_k and glass refractive rate n_b , the 3 transmittance T_1 at the gas-glass interface also remains constant at 96%, so **Equation** 4 **S20** can be simplified to the transmittance *T* output by the computer and the refractive 5 index n_s of the hydrogel relationship:

$$n = 0.96 \sqrt{\frac{5.76 - 6\sqrt{T}}{T} + \frac{2.88\sqrt{T}}{T}}$$
 Equation S21

7 Where T is the transmittance as measured by using UV-vis-NIR spectrometer.

8

1

9 Figure S11. Analysis of FIRST hydrogel tensile test images. a Schematic diagram 10 of compliance and fracture energy calculation. b The stress(σ)-stretch(λ) curves for 11 both single-edge notched and intact FIRST hydrogel, obtained by immersing the 12 hydrogel in 27 °C water at a stretch rate of 0.17 s⁻¹. c Calculation of compliance (left) 13 and fracture energy (right) of FIRST hydrogel. d Mechanical dissipation of FIRST

1 hydrogels. Tensile tests were performed on a Zhuhai SANS (CMT2203) machine equipped with a thermostatic water bath over a prescribed temperature at 27 °C. For 2 tensile tests, rectangular gels samples with a length of 20 mm, width of 8 mm and 3 thickness of 300 mm were used. The applied deformed rate was fixed at 0.17 s⁻¹ for 4 5 the tests. Three samples were measured for each construct to calculate the mean and standard deviation. The nominal tensile stress(σ), nominal tensile strain(γ), elastic 6 modulus(E) were obtained from the stress-strain curves. The σ was calculated by 7 dividing the force (F) by the cross-sectional area, and the ε was obtained by dividing 8 stretched length by the original length. The elastic modulus was calculated from the 9 10 slope over 1%-5% elongation in the stress-strain curves. The work of extension (U)11 was calculated by integrating the area of stress-strain curves.

$$U(\varepsilon) = \int_{0}^{\gamma} \sigma d\gamma$$
 Equation S22

13 where $U(\gamma)$ is the work of extension at a strain of γ and σ is the nominal tensile stress.

14 Single edge notched testing is used to determine the fracture energy. Two identical 15 samples with a length of 20 mm and width of 8 mm were used for tensile testing. A 16 notch with a length of 2 mm along the width was introduced by a razor blade cutting 17 into one of these two samples, with *A* as the area of the cross section of the unnotched 18 sample and L_0 as the initial distance between the clamps. A stress-stretch curve was 19 measured for both the notched sample and an unnotched sample with the same initial 20 dimensions. The fracture energy based on the single edge crack method is given by:

21
$$\Gamma_{noth} = \frac{6U_0}{\sqrt{\lambda_c}}$$
 Equation S23

22 where *c* is the length of the crack and λ_c is the stretch at which crack propagation 23 initiates. U_0 is the strain energy density, which is calculated by integration of the stress 24 versus engineering strain of unnotched samples.

1

Figure S12. Recycling FIRST hydrogel and recovery efficiency. a The recycling 2 process for disposing of the FIRST hydrogel. b The 1H NMR spectra for recycled 3 4 polymer in FIRST hydrogel. c the thermo-responsiveness of the recycled FIRST 5 hydrogel. The recovery efficiency is determined by calculating the ratio of the transmittance at 15 °C of the recycled sample to that of the pristine sample. d The tensile 6 7 curves for the recycled FIRST hydrogel, where the recovery efficiency is defined as the 8 ratio of the tensile strength of the recycled sample to that of the pristine sample. It is 9 worth noting that all samples are immersed in DI water during the entirety of the tests, and the water temperature is continuously monitored using an integrated thermocouple. 10 e. The performance for light regulation of the recycled samples. 11

12

- 13
- 14
- 15
- 16

1 Supplementary Note 8. Chord Length Distribution Simulation Calculation.

2 Each image of the stack is iteratively analyzed by a MATLAB® algorithm developed by M. Ryan MacIver, which we repurposed to process the SEM images to obtain an 3 average chord length distribution representative of the entire image stack. Briefly, in 4 the selected stack, each 2D image was converted to grayscale, contrast enhanced, and 5 binarized. Then, a set of 10,000 randomly oriented lines was drawn on each image and 6 the number of segments defining the phase boundary (change from pore phase to gel 7 8 phase) was sorted according to the chord dimension R (µm) to extract the frequency f(R) Histogram with bin size of 1 µm. The minimum chord length in pixels is set to 2, 9 10 and the scale from pixels to metric units (μ m) is 0.002834.

All histograms show an exponential decay if plotted in a semi-log plot (*i.e.* log f(R) vs
R (μm)), that evolves according to:

$$f_{void-phase} \propto exp \left(\frac{-R}{\lambda_{void-phase}} \right)$$

 $f_{gel-phase} \propto exp \left(\frac{-R}{\lambda_{rol}} \right)$

Equation S24

Equation S25

14

15 where the persistence length λ , describes the characteristic length scales of the of the 16 two phases; λ was obtained for each gel by fitting the averaged exponential decays, 17 considering only the most frequent chord lengths.

18

Figure S13. Chord-length analysis of FIRST hydrogel. Chords are defined as the segments that form when a set of randomly oriented lines cross phase boundaries. The averaged frequency of chords with given length (f(R)) for a gel phase and b void phase. The lines are the fitting of the data to exponential decays. With the evolution of phase separation, the chord length distribution and characteristic chord length of

1 the polymer phase decreased; on the contrary, the chord length distribution and

2 characteristic chord length of the void phase increased.

3 <u>Supplementary Note 9. Small-angle Neutron scattering (SANS) analysis.</u>

SANS were performed at the China spallation neutron source (CSNS). Incident 4 neutrons with wavelengths of 1-9 Å were selected using a double-disc bandwidth 5 chopper, which was collimated to the sample by a pair of apertures. In the experiments, 6 a sample to detector distance of 4 m and sample aperture of 6 mm were used. A 1 m 7 square detector array was used composed of 120 linear 3He gas tubes with a diameter 8 of 8 mm, corresponding collimation lengths covering the scattering vector (q) range 9 between 0.005 and 0.1 Å⁻¹. The scattering vector is given by $q = \left(\frac{4\pi}{\lambda}\right) sin\left(\frac{\theta}{2}\right)$, where θ 10 is the scattering angle. For each sample, the presented data were collected over ~120 11 12 min at 100 kW. Neutron data are corrected for background scattering (empty sample 13 holder), transmission and detector efficiency, and set to absolute units. The scattering 14 was calibrated for absolute intensity using a 1.14 mm thick Bates-Poly62.5k standard. 15 All samples were prepared in Hellma quartz cells with a 1 mm path length, and the measurements took place at 15 °C, 20 °C, 25 °C, 30 °C and 35 °C. The quartz cells 16 17 were properly sealed to prevent any evaporation during the measurement.

18 Before SANS measurements, water in FIRST hydrogels was exchanged by D_2O water 19 by swelling specimen cut from hydrogels in excessive amount of heavy water. After 20 24 h of swelling, the used heavy water was replaced by fresh one. The procedure was 21 repeated three times.

For the SANS measurements, the hydrogel samples were equilibrated in SANS sample holders for 2 h at a starting temperature 15 °C. After the SANS data collection, the samples were heated up to a next temperature (20 °C) and allowed to equilibrate again for 2 h. Measurements at subsequent temperatures (25 °C, 30 °C, 35 °C) were carried out in the same way. The cooling cycle was further performed to affirm the reversibility. The scattering intensities at all temperatures were radially averaged and corrected for the sample transmission, room background, and detector efficiency using standard procedures.

30 Representative SANS patterns obtained for gels typically lack peaks corresponding to

strong correlations between strands or junctions due to the lack of long-range order⁶⁸. 1 The behavior of scattering curves shows two features: a significant upturn at q < 0.022 Å⁻¹ and smooth decrease at 0.02 Å⁻¹ $\leq q \leq 0.1$ Å⁻¹. The scattered intensity for large q and 3 small q regions obeys power low with $I \sim q^m$ and $I \sim q^n$, respectively, where both m and 4 n are negative exponent. In related works on gels, thermal and frozen-in concentration 5 fluctuations have been made responsible for the characteristic fractal exponent of m 6 and n, respectively⁶⁹. As the temperature increases from 15 °C to 35 °C, m decreases 7 from -2.9 to -3.8, indicating the formation of sharper interfaces between different 8 9 phase domains. In the meanwhile, n decrease from -0.5 to -1. This decrease shows a tendency of segment between hydrophobic clusters to change from a stretched 10 conformation to excluded volume chain conformation. 11

12 More quantitative information can be resolved by fitting the SANS spectra to D2O 13 was chosen as solvent because its scattering length density ($\rho_{D2O}=6.36\times10^{10}$ cm⁻²) 14 strongly differs from that of PVA ($\rho_{PVA}=0.634\times10^{10}$ cm⁻²) and the alkane chain 15 aggregates ($\rho_{SH}=1.67\times10^9$ cm⁻²) As confirmed in a previous study, the replacement of 16 H_2O with D_2O does not induce significant modification of the transition temperature in 17 thermo-responsive polymers⁷⁰. The SANS spectra were fitted by using Gauss-18 Lorentz-gel model:

$$I(q) = A \frac{1}{\left(1 + \left(D + \frac{1}{3}\right)q^2\zeta^2\right)^{\frac{D}{2}}} + Be^{\left(-q^2\frac{R_g^2}{3}\right)} + I_{bg}$$

19

Equation S26

20 The A and B represents Lorentz and Guinier scaling factors, respectively. D is the 21 Porod exponent, giving an estimate of the roughness of the interfaces between 22 different domains of inhomogeneities. As summarized in **Figure 3b**, fitting results 23 shows that the correlation length ξ decreases with temperatures, whilst the Porod 24 exponent and R_g increases from -0.5 to -1.0 and from 30 nm to 50 nm, respectively. 25 All these transitions showed an abrupt jump to a plateau value at around 28 °C.

To provide additional validation for the concept of nodules, we employed a hard-sphere model to effectively analyze the SANS data (**Figure S14**). Within this model, the nodule is represented by a repulsive hard sphere potential, defined by a mean radius 1 with a specific size distribution.

3 Figure S14: Schematics for the characteristic structures resolved from the SANS 4 spectra by using hard-sphere model. These structural parameters are summarized in inset table; The concept of "nodules" can be understood as instances of structural 5 diversity occurring at the micro- or mesoscale. In particular, the butyl side chains have 6 7 the capability to self-organize into isolated spherical assemblies with short-range 8 correlations. These hydrophobic regions function as points of scattering for Small-Angle Neutron Scattering (SANS), thereby reflecting the characteristic length in the 9 actual spatial arrangement. Such structure can be generally described by a hard-sphere 10 model. In this model, such nodules can be described as a repulsive hard sphere potential 11 of radius R_{HS} and a polydispersity that can be defined by σ_R/R_m , where R_m is the mean 12 radius of the distribution with standard deviation σ_R . The fitting results are summarized 13 in Figure S14. The data were analysed by using Igor software by using the Percus-14 15 Yevick disordered hard-sphere model (https://www.nist.gov/ncnr/data-reductionanalysis/sans-software). This model has been reported to be sufficiently well related to 16 the structure of hydrophobic association hydrogels. 17 18

```
20 <u>Supplementary Note 10. Rheological characterization and tensile tests.</u>
```


2 Figure S15. Stress relaxation at tensile strain of 10% at temperature of 20°C and 3 40 °C. Stress relaxation map of FIRST hydrogel before and after phase transition. 4 Clearly, significant residual stress can be observed even after over relaxation of 4 hours. 5 This result suggests the exitance of permeant crosslinks. Counterintuitively, the residual 6 normalized stress at 40 °C is larger than that at 20 °C. One possible explanation is that 7 the retractive forces are partially of entropic origin. During this stress relaxation 8 experiment, we first apply a fixed amount of deformation, and then measure the load

9 required to maintain this specific deformation as a function of time.

10

2 Figure S16. Rheological characterization of FIRST hydrogels. a Schematic diagram of rheological characterization. b Temperature-ramp rheological test (b-I) and 3 Oscillation rheological test (b-II) of FIRST hydrogel. As shown in Figure S16b, the 4 5 modulus of hydrogels almost did not change before and after the phase transition, indicating that the phase transition components have no significant mechanical 6 7 contribution to FIRST hydrogels. Considering the dispersity of polyvinyl alcohol in 8 chemical modification process, it is assumed that the phase change component is mainly 9 composed of weakly hydrophobic parts. We guessed that this elastic network structure may be formed by the strong hydrophobic part through topological entanglement 10 11 crosslinking.

- 12
- 13
- 14
- 15
- 16
- 17
- 18

<u>Supplementary Note 11. Light and thermal regulation capabilities of FIRST</u>
 hvdrogel laminated window.

Figure S17. Thickness dependence of the optical properties of FIRST hydrogels. a 4 5 UV-vis-NIR spectra of FIRST hydrogels with thickness of 0.1mm, 0.2mm, 0.3mm, and 0.4mm. b-I Light transmittance of 0.1-0.4mm FIRST hydrogel at 500nm as a function 6 of temperature. If the corresponding temperature when the transmittance reaches 50% 7 8 is defined as the phase transition temperature, it can be found that the phase transition temperature of FIRST hydrogel decreases with the increase of thickness. b-II 9 Dependence of phase transition points on FIRST thickness. The transmittance of 0.1 10 mm FIRST hydrogel could not decrease to 50% in this temperature range, and the phase 11 transition temperature could not be defined as described above. As shown in the Figure 12 S17 with the increase of thickness, the shielding effect of FIRST hydrogel after phase 13 transformation on NIR spectrum is enhanced. Combined with the discussion results, 14 0.3mm FIRST hydrogel was finally selected as the object for further discussion and 15 testing. Transmittance and reflectance spectra were collected on a UV-vis-NIR 16 spectrophotometer system with an integrating sphere (UV-3600 Plus, SHIMADZU, 17 Japan). The spectrophotometer was connected to a constant temperature ice bath for 18 19 heating and cooling.

S46

1 The T_{lum} , T_{IR} , and solar transmittance T_{sol} , were calculated:

$$T_{lum/IR/sol} = \frac{\int \phi_{lum/IR/sol} T(\lambda) d\lambda}{\phi_{lum/IR/sol} d\lambda}$$
Equation S27
$$\Delta T_{lum/IR/sol} = T_{lum/IR/sol} - T_{lum/IR/sol}^{15^{\circ}\text{C}}$$
Equation S28

10

Long-wavelength infrared light reflectance spectroscopy in the wavelength range (2.5 4 5 to 16 µm) were measured by a Fourier transform infrared spectrometer (Nicolet 6700, Thermo Fisher, America) and a gold-plated integrating sphere, with an external sample 6 temperature change table and a ramp rate of 1 K/min. Without considering absorption, 7 the emissivity is calculated by the following equation: 8 9 $\varepsilon = 1 - R$ **Equation S29**

$$\bar{\varepsilon}_{LWIR} = \frac{\int I_{BB}(T,\lambda)\varepsilon(T,\lambda)d\lambda}{\int I_{BB}(T,\lambda)d\lambda}$$

Equation S30

Equation S28

Here $I_{BB}(T,\lambda)$ is the spectral intensity emitted by a blackbody and $\varepsilon(T,\lambda)$ is the surface's 11 angular spectral thermal emittance in the range of $8-13 \ \mu\text{m}$. 12

13 Indoor Thermal Test Procedure. The indoor thermal test is a proof-of-concept for the 14 FIRST hydrogel, which can both regulate solar energy and store thermal energy. This test provides a controlled environment without temperature fluctuations for the 15 experiment and compares 4 samples: glass panel, Low-E glass, FIRST hydrogel and 16 laminated glass. With this test, it can accurately assess the effectiveness of the FIRST 17 hydrogel. The ambient temperature of the indoor lighting test is 25 °C. The indoor test 18 glass box is made of one plexiglass box, five 2 cm thick Styrofoam pieces with black 19 inside and different samples. Thermocouples are used to detect the temperature of 2 20 21 different parts in the glass box: the inner surface of the window (temperature sensor A) and the air temperature in the geometric center of the box (temperature sensor B). 22 For the 1000 W power solar lamp used in the experiment, the area between the lamp 23

and the glass box related to aluminum foil to prevent heat loss. After turning off the 24 solar light, the unit cools down naturally. 25

1 Outdoor Thermal Test Procedure. The outdoor test was designed to compare the 2 energy-saving performance of glass panel, Low-E glass, 0.3mm-thick DI water, and 3 FIRST hydrogel samples. It provides a realistic experiment environment with temperature fluctuation. A box (inner dimension: 15 cm \times 15 cm \times 20 cm) with glass 4 panel (glass thickness is 5 mm, dimension: 20 cm \times 20 cm) on the top was set as a 5 control sample with thermocouple sensors in the geometrical center. The rest of testing 6 7 setup has the same design as the control sample, while the glass panel was replaced by glass panel, Low-E glass, 0.3mm-thick DI water, and FIRST hydrogel, respectively. 8 9 For the outdoor demonstration in hot temperature, the four setups were placed outdoor without any shelter and subjected to direct sunlight. The data were recorded every 10 10 min in Guangzhou. 11

12

- 13
- 14
- 15

16

17

18

1

2 Figure S18. The thermal response curves of the FRIST hydrogels and the phase

3 transition photographs (see Video S3) triggered by finger touch.

5 Figure S19. Differential scanning calorimetry (DSC) curves to track the thermal 6 affects of FIRST hydrogel in a heating and cooling cycle. Prior to measurment, the 7 thermal history of this sample was removed by heating treatment in water at 40 °C.

Figure S20. Cycling testing for the FIRST smart window. a The 3D modeling 2 3 diagram of the cyclic testing device (Figure S20aI) and the actual construction of the finished product display of the cyclic testing device (Figure S20aII). b Optical 4 5 performance of FIRST hydrogels during cyclic testing. As shown in Figure S20b, the 6 major performance index of FIRST smart window at both 15 °C and 40 °C were almost 7 constant after 500 cycles. In the cyclic test system, we used a DC power supply to supply current, a relay to control circuit switching, and a pulse generator to control 8 circuit switching time, multi-channel data recorder with external semiconductor 9 refrigeration plate is responsible for cooling, and ITO conductive glass is linked to DC 10 power supply and stacked below the smart window for heating. We set a heating time 11

1 of 15 s and a cooling time of 120 s.

3 Figure S21. Optical modulation performance of FIRST smart window over 14 days.

8 Figure S23. Thermal properties of FIRST hydrogel-based thermochromic 9 windows. a specific heat capacity of FIRST hydrogel (light blue line) and dry PVB film (red line). b Temperature of the inner surface in Case I of the window 10 (temperature reading of thermometer A) with respect to the lighting time for the 11 12 glass, 0.1mm water, Low-E glass, and FIRST hydrogel, respectively. (left). Air

- 1 temperature in the device (temperature reading of thermometer B) with respect to the
- 2 lighting time for glass, 0.1mm water, Low-E glass, and FIRST hydrogel,
- 3 respectively. (right). c Thermal time constant (τ) of the inner surface in Case III.

Material	T _{lum} (%)	ΔT _{IR} (%)	ΔT_{sol} (%)	Thickness (µm)	Response time (min)	Reference
PNIPAm-Hydrogel	89.1	49.2	69.1	200	NA ^a	73
PNIPAm-Solution	90.0	41.0	68.1	10000	15.00 ^b	1
PU/POSS hydrogel	99.0	40.0	51.0	200	1.00°	15
PNIPAm/water/glycero l hydrogel	89.2	48.0	60.8	400	0.16 ^d	39
P(NIPAM-AEMA)	87.2	75.6	81.3	240	5.00 ^b	2
HPC/NaCl hydrogel	88.5	16.4	40.1	350	NA ^a	74
V ⁰ 2/PNIPAM hybrid hydrogel	82.1	29.9	34.7	52	NAª	7
HPCA/W-V ⁰ 2 hydrogel	79.0	24.0	36.4	25	NAª	75
HPC hydrogel	71.6	37.7	50.4	150	5.00 ^d	56
C-g-PDN solution	95.7	52.0	76.0	10000	5.33 ^f	76
HPC/PAA Hybrid Hydrogel	90.1	37.0	47.5	1000	1.4 °	43
PNIPAm/V ⁰ 2@Si ⁰ 2 hydrogel	37.0	NAª	63.0	NAª	NAª	8
HPMC/AuNCs hydrogel	88.9	36.0	62.6	NAª	3.00°	75
Cu ₇ S _{4/PNIPAm}	79.0	27.0	32.0	75	2.00°	78
Composite Hydrogel	01.20			1000		27
P(NIPAm-co-DMAA)	91.30	NA ^a	88.8	1000	NAª	37
FIRST	92.4	68.5	80.8	300	0.16 ^d	This work

4 Table S10. Light and thermal regulation properties of different hydrogel systems.

5 a No available data was reported in relevant literature.

6 b Phase transition induced by Xenon lamp irradiation heating.

7 c Phase transition induced by exposure to direct sunlight.

8 d Phase Transition induced by thermal stimulation.

9 e Phase Transition induced by heating.

1 f Phase transition induced by near infrared light source irradiation heating.

2

3 It's also crucial to underscore that, in the majority of existing literatures, the assessment of thermochromic window "performance" is conventionally conducted at the device 4 level. At present, the exploration of thermochromic windows remains in its early 5 developmental phases. A standardized protocol for performance evaluation has not yet 6 been established. Thus, exercising caution when making "comparisons" between 7 various devices is paramount. For instance, comparisons involving metrics like 8 9 luminous transmittance (T_{lum}) and solar modulation (ΔT_{sol}) may entail devices incorporating diverse thicknesses of active materials. Similarly, assessing response 10 11 time might involve different illumination or heating sources, potentially resulting in significant variations in temperature gradients. In this work, in order to better fit the 12 real life use scenario, we use the method of thermal stimulation to measure the response 13 time of the intelligent window⁷⁷. 14

16 Figure S24. 13:00-17:00 air temperature curve for the outdoor demonstration in 17 Guangzhou. As shown in Figure S24 and Figure 5f, in general, when the outdoor 18 temperature in summer reaches the hottest time of the day (14:00), the temperature of 19 ordinary glass should be the highest. In this test, also as expected, the geometric center 20 temperature of ordinary glass reached 86.7 °C at 14:00, and the geometric center of 21 0.3mm thick water and Low-E glass decreased in order, while the geometric 22 temperature of FIRST was only 59.6 °C, the lowest among the four windows.

1

Figure S26. The house model for simulation. An 8 m by 8 m by 3 m model house 2 with four 2 m by 4 m windows in the center of four walls was built in EnergyPlus. glass 3 panel, Low-E glass and FIRST hydrogel were calculated separately, with optical data 4 5 shown in Table S11 for the three windows. The internal heat loads were calculated on 6 the basis of the house are. Two people and total power of 6 W/m^2 from electronic and 7 electrical devices were considered as internal heat loads. Climate data of Anchorage, 8 Guangzhou, Beijing, Wuhan, and Chongqing were selected to analyze the window performance in different city in China. The indoor thermal regulation by the smart 9 10 windows was recorded through the simulation without an HVAC system, while the 11 energy-saving assessment was proceeded by adding an HVAC system with a single set point of 26 °C and recording the energy consumption for both heating and cooling of 12 13 each model.

- 14
- 15
- 16
- 17
- 18
- 19
- 20

2 Figure S27. Energyplus energy simulation for plain glass, Low-E glass and FIRST

3 smart windows. a EnergyPlus refrigeration energy consumption simulation in four 4 cities of China. b Average energy consumption simulation in a.

5

6

Table S11. Optical data of different windows.

	Glass	Low-E glass	0.3 mm water	FIRST hydrogel
Thickness (mm)	10	10	10	0.3
T _{sol (%)}	93.4	56.4	86.9	89.8 (cool)/9.0 (hot)
<i>T_{IR (%)}</i>	93.5	56.3	76.4	87.1 (cool)/18.6 (hot)
T _{lum (%)}	93.2	58.4	94.8	90.7 (cool)/ 9.0 (hot)
ε_{LWIR} (-)	0.82	0.57	0.86	0.96 (cool)/0.95 (hot)

	1	/	

8

9

10

10

1

2

3 Figure S28. Concept of all-weather thermochromic windows composed of stacked

4 FIRST hydrogel layer and Low-e glass. During the summer months, the initial layer
5 (FIRST) transitions to an opaque state, reflecting visible and near-infrared photons back

6 into the external environment. In the winter months, the FIRST layer absorbs near-

7 infrared radiation from the sun, leveraging the effective near-infrared light absorption

capability of water. The absorbed near-infrared light is converted into heat, which is
 subsequently conducted to the glass through the Low-E layer, known for its high
 thermal conductivity. The absorbed heat can then be re-emitted into the room through
 the glass, facilitated by the high emissivity of SiO₂.⁸⁰ Note that the reverse process,
 namely the emitting heat inside buildings into the external environment, cannot occur
 due to the existence of Low-e layer.

7

8

9 (IV) Supplementary References:

- 10 1. Zhou, Y.; Wang, S.; Peng, J.; Tan, Y.; Li, C.; Boey, F. Y. C.; Long, Y., Liquid thermo-11 responsive smart window derived from hydrogel. *Joule* **2020**, *4* (11), 2458-2474.
- 12 2. Li, X.-H.; Liu, C.; Feng, S.-P.; Fang, N. X., Broadband light management with thermochromic 13 hydrogel microparticles for smart windows. *Joule* **2019**, *3* (1), 290-302.
- 14 3. Chen, G.; Wang, K.; Yang, J.; Huang, J.; Chen, Z.; Zheng, J.; Wang, J.; Yang, H.; Li,
- 15 S.; Miao, Y.; Wang, W.; Zhu, N.; Jiang, X.; Chen, Y.; Fu, J., Printable Thermochromic
- 16 Hydrogel-Based Smart Window for All-Weather Building Temperature Regulation in Diverse Climates.
- 17 Advanced Materials 2023, 35 (20), 2211716.
- 18 4. Guo, H.; Sanson, N.; Marcellan, A.; Hourdet, D., Thermoresponsive toughening in LCST-type
- hydrogels: Comparison between semi-interpenetrated and grafted networks. *Macromolecules* 2016, 49
 (24), 9568-9577.
- 5. Guo, H.; Sanson, N.; Hourdet, D.; Marcellan, A., Thermoresponsive Toughening with Crack
 Bifurcation in Phase-Separated Hydrogels under Isochoric Conditions. *Advanced Materials* 2016, *28*(28), 5857-5864.
- Mu, J.; Zheng, S., Poly (N-isopropylacrylamide) nanocrosslinked by polyhedral oligomeric
 silsesquioxane: temperature-responsive behavior of hydrogels. *Journal of colloid and interface science* **2007**, 307 (2), 377-385.
- 27 7. Zhou, Y.; Cai, Y.; Hu, X.; Long, Y., VO 2/hydrogel hybrid nanothermochromic material with
 28 ultra-high solar modulation and luminous transmission. *Journal of Materials Chemistry A* 2015, *3* (3),
 29 1121-1126.
- 30 8. Ke, Y.; Zhou, C.; Zhou, Y.; Wang, S.; Chan, S. H.; Long, Y., Emerging thermal-responsive 31 materials and integrated techniques targeting the energy-efficient smart window application. *Advanced*
- 32 *functional materials* **2018**, *28* (22), 1800113.
- Mao, J.; Yu, Q. J.; Wang, S., Preparation of multifunctional hydrogels with pore channels using
 agarose sacrificial templates and its applications. *Polymers for Advanced Technologies* 2021, *32* (4),
 1752-1762.
- 36 10. Yu, Q. J.; Mao, J.; Wang, S.; Guo, Z. Y., A simple multifunctional PNIPAM-GO/PANI hydrogel
- 37 preparation strategy and its application in dye adsorption and infrared switching. Journal of
- 38 *Macromolecular Science, Part A* **2020,** *57* (11), 751-760.
- 39 11. Feng, Y.; Wang, S.; Li, Y.; Ma, W.; Zhang, G.; Yang, M.; Li, H.; Yang, Y.; Long, Y.,

- 1 Entanglement in Smart Hydrogels: Fast Response Time, Anti-Freezing and Anti-Drying. Advanced
- 2 Functional Materials **2023**, *33* (21), 2211027.
- 3 12. Yang, X.; Li, Z.; Liu, H.; Ma, L.; Huang, X.; Cai, Z.; Xu, X.; Shang, S.; Song, Z.,
- 4 Cellulose-based polymeric emulsifier stabilized poly (N-vinylcaprolactam) hydrogel with temperature
- 5 and pH responsiveness. International journal of biological macromolecules 2020, 143, 190-199.

6 13. Matsubara, K.; Watanabe, M.; Takeoka, Y., A Thermally Adjustable Multicolor Photochromic
7 Hydrogel. *Angewandte Chemie International Edition* 2007, *46* (10), 1688-1692.

- 8 14. Nonoyama, T.; Lee, Y. W.; Ota, K.; Fujioka, K.; Hong, W.; Gong, J. P., Instant thermal
 9 switching from soft hydrogel to rigid plastics inspired by thermophile proteins. *Advanced Materials*10 2020, 32 (4), 1905878.
- 10 2020, 32 (4), 1905878.
- 11 15. Zhang, Q.; Jiang, Y.; Chen, L.; Chen, W.; Li, J.; Cai, Y.; Ma, C.; Xu, W.; Lu, Y.;
- Jia, X., Ultra-compliant and tough thermochromic polymer for self-regulated smart windows. *Advanced Functional Materials* 2021, *31* (18), 2100686.
- 14 16. Shi, K.; Liu, Z.; Yang, C.; Li, X.-Y.; Sun, Y.-M.; Deng, Y.; Wang, W.; Ju, X.-J.; Xie,
- 15 R.; Chu, L.-Y., Novel Biocompatible Thermoresponsive Poly(N-vinyl Caprolactam)/Clay
- 16 Nanocomposite Hydrogels with Macroporous Structure and Improved Mechanical Characteristics. ACS
- 17 Applied Materials & Interfaces 2017, 9 (26), 21979-21990.
- 18 17. Niu, Y.; Zhou, Y.; Du, D.; Ouyang, X.; Yang, Z.; Lan, W.; Fan, F.; Zhao, S.; Liu,
 19 Y.; Chen, S.; Li, J.; Xu, Q., Energy Saving and Energy Generation Smart Window with Active
 20 Control and Antifreezing Functions. *Advanced Science* 2022, 9 (6), 2105184.
- 21 18. Xu, Z.; Wang, S.; Hu, X. Y.; Jiang, J.; Sun, X.; Wang, L., Sunlight-induced
 22 photo-thermochromic supramolecular nanocomposite hydrogel film for energy-saving smart window.
- 23 Solar Rrl 2018, 2 (11), 1800204.
- 24 19. Liu, Y.; Guo, Y.; Zhang, Z.; Huang, Z.; Qi, P.; Cui, J.; Song, A.; Hao, J., A new 25 application of Krafft point concept: an ultraviolet-shielded surfactant switchable window. *Chemical*
- 26 Communications 2020, 56 (39), 5315-5318.
- 27 20. Li, K.; Meng, S.; Xia, S.; Ren, X.; Gao, G., Durable and controllable smart windows based on
 28 thermochromic hydrogels. ACS Applied Materials & Interfaces 2020, 12 (37), 42193-42201.
- 29 21. Xu, G.; Xia, H.; Chen, P.; She, W.; Zhang, H.; Ma, J.; Ruan, Q.; Zhang, W.; Sun, Z.,
- 30 Thermochromic Hydrogels with Dynamic Solar Modulation and Regulatable Critical Response
- 31 Temperature for Energy-Saving Smart Windows. Advanced Functional Materials 2022, 32 (5), 2109597.
- 32 22. Yu, Z.; Yang, Y.; Shen, C.; Mao, L.; Cui, C.; Chen, Z.; Zhang, Y., Thermochromic
- hydrogels with an adjustable critical response temperature for temperature monitoring and smart
 windows. *Journal of Materials Chemistry C* 2023, *11* (2), 583-592.
- 35 23. Zhou, Y.; Dong, X.; Mi, Y.; Fan, F.; Xu, Q.; Zhao, H.; Wang, S.; Long, Y., Hydrogel
 36 smart windows. *Journal of Materials Chemistry A* 2020, 8 (20), 10007-10025.
- 37 24. Yuan, N.; Xu, L.; Wang, H.; Fu, Y.; Zhang, Z.; Liu, L.; Wang, C.; Zhao, J.; Rong, J.,
- 38 Dual physically cross-linked double network hydrogels with high mechanical strength, fatigue resistance,
- 39 notch-insensitivity, and self-healing properties. ACS Applied Materials & Interfaces 2016, 8 (49), 3403434044.
- 41 25. Tuncaboylu, D. C.; Sari, M.; Oppermann, W.; Okay, O., Tough and self-healing hydrogels
- 42 formed via hydrophobic interactions. *Macromolecules* **2011**, *44* (12), 4997-5005.

- 1 26. Wang, F.; Yong, X.; Deng, J.; Wu, Y., Poly (N, N-dimethylacrylamide-octadecyl acrylate)-clay
- 2 hydrogels with high mechanical properties and shape memory ability. *RSC advances* 2018, 8 (30),
 3 16773-16780.
- 4 27. Su, Q.; Wang, Y.; Guan, S.; Zhang, H.; Gao, G. H.; Zhu, X., Rapid formation of highly 5 stretchable and notch-insensitive hydrogels. *RSC advances* **2016**, *6* (36), 30570-30576.
- 6 28. Kurt, B.; Gulyuz, U.; Demir, D. D.; Okay, O., High-strength semi-crystalline hydrogels with
 7 self-healing and shape memory functions. *European Polymer Journal* 2016, *81*, 12-23.
- 8 29. Gulyuz, U.; Okay, O., Self-healing polyacrylic acid hydrogels. *Soft Matter* 2013, 9 (43), 102879 10293.
- 10 30. Wang, F.; Weiss, R., Thermoresponsive supramolecular hydrogels with high fracture toughness.
- 11 *Macromolecules* **2018**, *51* (18), 7386-7395.
- 12 31. Meng, L.; Shao, C.; Cui, C.; Xu, F.; Lei, J.; Yang, J., Autonomous self-healing silk fibroin
- 13 injectable hydrogels formed via surfactant-free hydrophobic association. ACS applied materials &
- 14 *interfaces* **2019**, *12* (1), 1628-1639.
- 15 32. Pan, J.; Zeng, H.; Gao, L.; Zhang, Q.; Luo, H.; Shi, X.; Zhang, H., Hierarchical multiscale
- 16 hydrogels with identical compositions yet disparate properties via tunable phase separation. Advanced
- 17 Functional Materials **2022**, *32* (13), 2110277.
- 18 33. Pan, J.; Zhang, W.; Zhu, J.; Tan, J.; Huang, Y.; Mo, K.; Tong, Y.; Xie, Z.; Ke, Y.;
- Zheng, H., Arrested Phase Separation Enables High-Performance Keratoprostheses. *Advanced Materials* **2023**, *35* (16), 2207750.
- 21 34. Prange, M. M.; Hooper, H. H.; Prausnitz, J. M., Thermodynamics of aqueous systems containing 22 hydrophilic polymers or gels. *AIChE journal* **1989**, *35* (5), 803-813.
- 23 35. Müller, M.; Abetz, V., Nonequilibrium processes in polymer membrane formation: Theory and
- 24 experiment. Chemical Reviews 2021, 121 (22), 14189-14231.
- 25 36. Chen, L.; Zhao, C.; Huang, J.; Zhou, J.; Liu, M., Enormous-stiffness-changing polymer
- networks by glass transition mediated microphase separation. *Nature Communications* 2022, *13* (1),
 6821.
- 28 37. Chen, G.; Wang, K.; Yang, J.; Huang, J.; Chen, Z.; Zheng, J.; Wang, J.; Yang, H.; Li,
 29 S.; Miao, Y., Printable Thermochromic Hydrogel-Based Smart Window for All-Weather Building
- 30 Temperature Regulation in Diverse Climates. *Advanced Materials* **2023**, 2211716.
- 31 38. Matsubara, K.; Watanabe, M.; Takeoka, Y., A thermally adjustable multicolor photochromic
- 32 hydrogel. Angewandte Chemie 2007, 119 (10), 1718-1722.
- 33 39. Li, G.; Chen, J.; Yan, Z.; Wang, S.; Ke, Y.; Luo, W.; Ma, H.; Guan, J.; Long, Y.,
- 34 Physical crosslinked hydrogel-derived smart windows: anti-freezing and fast thermal responsive
- 35 performance. *Materials Horizons* 2023.
- 36 40. Ding, Y.; Duan, Y.; Yang, F.; Xiong, Y.; Guo, S., High-transmittance pNIPAm gel smart
- 37 windows with lower response temperature and stronger solar regulation. Chemical Engineering Journal
- **38 2023**, *460*, 141572.
- 39 41. Nakamura, A.; Ogai, R.; Murakami, K., Development of smart window using an hydroxypropyl
- 40 cellulose-acrylamide hydrogel and evaluation of weathering resistance and heat shielding effect. Solar
- 41 Energy Materials and Solar Cells 2021, 232, 111348.
- 42 42. Niu, Y.; Zhou, Y.; Du, D.; Ouyang, X.; Yang, Z.; Lan, W.; Fan, F.; Zhao, S.; Liu,

- 1 Y.; Chen, S., Energy saving and energy generation smart window with active control and antifreezing
- 2 functions. Advanced Science 2022, 9 (6), 2105184.
- 3 43. Zhang, L.; Xia, H.; Xia, F.; Du, Y.; Wu, Y.; Gao, Y., Energy-saving smart windows with
- 4 HPC/PAA hybrid hydrogels as thermochromic materials. ACS Applied Energy Materials 2021, 4 (9),
 5 9783-9791.
- 6 44. Nakamura, C.; Yamamoto, T.; Manabe, K.; Nakamura, T.; Einaga, Y.; Shiratori, S.,
 7 Thermoresponsive, freezing-resistant smart windows with adjustable transition temperature made from
- 8 hydroxypropyl cellulose and glycerol. Industrial & Engineering Chemistry Research 2019, 58 (16),
- 9 6424-6428.
- 10 45. Shi, K.; Liu, Z.; Yang, C.; Li, X.-Y.; Sun, Y.-M.; Deng, Y.; Wang, W.; Ju, X.-J.; Xie,
- 11 R.; Chu, L.-Y., Novel biocompatible thermoresponsive poly (N-vinyl caprolactam)/clay nanocomposite
- 12 hydrogels with macroporous structure and improved mechanical characteristics. ACS applied materials
- 13 & interfaces 2017, 9 (26), 21979-21990.
- 14 46. Timaeva, O.; Kuz'Micheva, G.; Pashkin, I.; Czakkel, O.; Prevost, S., Structure and dynamics
- 15 of titania–poly (N-vinyl caprolactam) composite hydrogels. *Soft Matter* **2020**, *16* (1), 219-228.
- 16 47. Li, K.; Gao, H.; Ren, X.; Gao, G. Regulatable thermochromic hydrogels via hydrogen bonds driven
- 17 by potassium tartrate hemihydrate. ACS sustainable chemistry & engineering **2019**, 7 (17), 15036-15043.
- 18 48. Meco, E.; Lampe, K. J. Impact of elastin-like protein temperature transition on PEG-ELP hybrid
- 19 hydrogel properties. *Biomacromolecules* 2019, 20 (5), 1914-1925.
- 20 49. Lee, H. Y.; Cai, Y.; Velioglu, S.; Mu, C.; Chang, C. J.; Chen, Y. L.; Song, Y.; Chew,
- 21 J. W.; Hu, X. M., Thermochromic Ionogel: A New Class of Stimuli Responsive Materials with Super
- 22 Cyclic Stability for Solar Modulation. *Chemistry of Materials* **2017**, *29* (16), 6947-6955.
- 50. Timaeva, O. I.; Kuz'micheva, G. M.; Pashkin, I. I.; Czakkel, O.; Prevost, S., Structure and
 dynamics of titania poly(N-vinyl caprolactam) composite hydrogels. *Soft Matter* 2020, *16* (1), 219228.
- 26 51. Gao, J.; Frisken, B. J., Cross-Linker-Free N-Isopropylacrylamide Gel Nanospheres. *Langmuir*27 2003, 19 (13), 5212-5216.
- 28 52. Brugnoni, M.; Nickel, A. C.; Kröger, L. C.; Scotti, A.; Pich, A.; Leonhard, K.; Richtering,
- 29 W., Synthesis and structure of deuterated ultra-low cross-linked poly(N-isopropylacrylamide) microgels.
- 30 Polymer Chemistry 2019, 10 (19), 2397-2405.
- 31 53. Cooperstein, M. A.; Canavan, H. E., Assessment of cytotoxicity of (N-isopropyl acrylamide) and
- 32 Poly(N-isopropyl acrylamide)-coated surfaces. *Biointerphases* 2013, 8 (1).
- 33 54. Tang, L.; Wang, L.; Yang, X.; Feng, Y.; Li, Y.; Feng, W., Poly (N-isopropylacrylamide)-
- 34 based smart hydrogels: Design, properties and applications. Progress in Materials Science 2021, 115,
- 35 100702.
- 36 55. Connelly, K.; Wu, Y.; Chen, J.; Lei, Y., Design and development of a reflective membrane for
- 37 a novel Building Integrated Concentrating Photovoltaic (BICPV)'Smart Window'system. Applied
- 38 energy 2016, 182, 331-339.
- 39 56. Wang, S.; Zhou, Y.; Jiang, T.; Yang, R.; Tan, G.; Long, Y., Thermochromic smart windows
 40 with highly regulated radiative cooling and solar transmission. *Nano Energy* 2021, *89*, 106440.
- 41 57. Ogawa, A.; Nakayama, S.; Uehara, M.; Mori, Y.; Takahashi, M.; Aiba, T.; Kurosaki, Y.,
- 42 Pharmaceutical properties of a low-substituted hydroxypropyl cellulose (L-HPC) hydrogel as a novel

- 1 external dressing. International Journal of Pharmaceutics 2014, 477 (1-2), 546-552.
- 2 58. Jain, S.; Sandhu, P. S.; Malvi, R.; Gupta, B., Cellulose derivatives as thermoresponsive polymer:
- 3 an overview. *Journal of applied pharmaceutical science* **2013**, *3* (12), 139-144.
- 4 59. Kabir, S. F.; Sikdar, P. P.; Haque, B.; Bhuiyan, M. R.; Ali, A.; Islam, M., Cellulose-based
 5 hydrogel materials: Chemistry, properties and their prospective applications. *Progress in biomaterials*
- 6 **2018**, *7*, 153-174.
- 7 60. Sala, R. L.; Goncalves, R. H.; Camargo, E. R.; Leite, E. R., Thermosensitive poly (N-
- 8 vinylcaprolactam) as a transmission light regulator in smart windows. *Solar Energy Materials and Solar*9 *Cells* 2018, 186, 266-272.
- 10 61. Halligan, S. C.; Dalton, M. B.; Murray, K. A.; Dong, Y.; Wang, W.; Lyons, J. G.; Geever,
- 11 L. M., Synthesis, characterisation and phase transition behaviour of temperature-responsive physically
- 12 crosslinked poly (N-vinylcaprolactam) based polymers for biomedical applications. Materials Science
- 13 and Engineering: C 2017, 79, 130-139.
- 14 62. Chen, Z.; Chen, Y.; Guo, Y.; Yang, Z.; Li, H.; Liu, H., Paper-structure inspired
- 15 multiresponsive hydrogels with solvent-induced reversible information recording, self-encryption, and
- 16 multidecryption. *Advanced Functional Materials* **2022**, *32* (23), 2201009.
- 17 63. Hu, Y.; Barbier, L.; Li, Z.; Ji, X.; Le Blay, H.; Hourdet, D.; Sanson, N.; Lam, J. W.;
- 18 Marcellan, A.; Tang, B. Z., Hydrophilicity-hydrophobicity transformation, thermoresponsive
- 19 morphomechanics, and crack multifurcation revealed by AIEgens in mechanically strong hydrogels.
- 20 Advanced Materials 2021, 33 (39), 2101500.
- 21 64. Hiroki, A.; Taguchi, M., Development of environmentally friendly cellulose derivative-based
- hydrogels for contact lenses using a radiation crosslinking technique. *Applied Sciences* 2021, *11* (19),
 9168.
- 24 65. Zavgorodnya, O.; Kozlovskaya, V.; Liang, X.; Kothalawala, N.; Catledge, S. A.; Dass, A.;
- 25 Kharlampieva, E., Temperature-responsive properties of poly (N-vinylcaprolactam) multilayer
- 26 hydrogels in the presence of Hofmeister anions. *Materials Research Express* **2014**, *1* (3), 035039.
- 27 66. Zhuo, S.; Halligan, E.; Tie, B. S. H.; Breheny, C.; Geever, L. M., Lower Critical Solution
- 28 Temperature Tuning and Swelling Behaviours of NVCL-Based Hydrogels for Potential 4D Printing
- 29 Applications. *Polymers* **2022**, *14* (15), 3155.
- 30 67. Wang, C.; Luan, W.; Zeng, Z.; Wang, H.; Sun, L.; Wang, J. H., Polyvinyl Butyral with
- 31 Different Acetalization Degrees: Synthesis and Solubility Parameters. Journal of Macromolecular
- 32 Science, Part B 2022, 61 (1), 92-110.
- 33 68. Lin, X.; Wang, K.; Zhou, B.; Luo, G., A microreactor-based research for the kinetics of polyvinyl
- 34 butyral (PVB) synthesis reaction. *Chemical Engineering Journal* **2020**, *383*, 123181.
- 69. Rong-zhen, Z.; Zhi-bin, W.; Ke-wu, L.; You-hua, C., Study on Refractive Index Characteristics
 of Chitosan Hydrogel. SPECTROSCOPY AND SPECTRAL ANALYSIS 2020, 40 (6), 1846-1851.
- 37 70. Wang, S.; Liu, M.; Gao, L.; Guo, G.; Huo, Y., Optimized association of short alkyl side chains
- 38 enables stiff, self-recoverable, and durable shape-memory hydrogel. ACS applied materials & interfaces
- **39 2019**, *11* (21), 19554-19564.
- 40 71. Panyukov, S.; Rabin, Y., Polymer gels: frozen inhomogeneities and density fluctuations.
- 41 *Macromolecules* **1996**, *29* (24), 7960-7975.
- 42 72. Nigro, V.; Angelini, R.; Bertoldo, M.; Buratti, E.; Franco, S.; Ruzicka, B., Chemical-physical

- 1 behaviour of microgels made of interpenetrating polymer networks of PNIPAM and poly (acrylic acid).
- 2 Polymers 2021, 13 (9), 1353.
- 3 73. Zhou, Y.; Cai, Y.; Hu, X.; Long, Y., Temperature-responsive hydrogel with ultra-large solar
- 4 modulation and high luminous transmission for "smart window" applications. Journal of Materials
- 5 *Chemistry A* **2014**, *2* (33), 13550-13555.
- 6 74. Chiang, F. B., Temperature-responsive hydroxypropylcellulose based thermochromic material and
 7 its smart window application. *RSC advances* 2016, *6* (66), 61449-61453.
- 8 75. Yang, Y.-S.; Zhou, Y.; Chiang, F. B. Y.; Long, Y., Tungsten doped VO 2/microgels hybrid
 9 thermochromic material and its smart window application. *RSC advances* 2017, 7 (13), 7758-7762.
- 10 76. Tan, Y.; Chen, R.; Xiao, Y.; Wang, C.; Zhou, C.; Chen, D.; Li, S.; Wang, W., Temperature-
- responsive 'cloud' with controllable self-assembled particle size for smart window application. *Applied Materials Today* 2021, 25, 101248.
- 13 77. Cao, D.; Xu, C.; Lu, W.; Qin, C.; Cheng, S., Sunlight-Driven Photo-Thermochromic Smart
- 14 Windows. Solar Rrl 2018, 2 (4), 1700219.
- 15 78. Zhu, H.; Wang, L., Smart window based on Cu7S4/hydrogel composites with fast photothermal
- 16 response. Solar Energy Materials and Solar Cells 2019, 202, 110109.
- 17 79. Peng, H.; Yang, X.; Gu, Y.; Yang, Q.; Lan, T.; Chen, S.; Yan, B. Thermochromic smart windows
- 18 with broad-range customizable responsive temperature via the Hofmeister effect. Journal of Materials
- 19 Chemistry A 2023, 11 (33), 17848-17857.
- 20 80. Youngblood, N.; Talagrand, C.; Porter, B. F.; Galante, C. G.; Kneepkens, S.; Triggs, G.;
- 21 Ghazi Sarwat, S.; Yarmolich, D.; Bonilla, R. S.; Hosseini, P.; Taylor, R. A.; Bhaskaran, H.,
- 22 Reconfigurable Low-Emissivity Optical Coating Using Ultrathin Phase Change Materials. ACS
- 23 *Photonics* **2022**, *9*(1), 90-100.
- 24