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S1. Justification for use of HOMO energy in manuscript

Due to a 50% reduction in computational burden, in the main manuscript we use the HOMO energy 
of a polymer chain as an approximation of its ionisation potential, and thus as a measure of the ease 
of oxidation of p(g2T-T) chains. The strong correlation of ionisation potential with the absolute value 
of the HOMO energy of chains (shown in Figure S1) confirms that this approximation is reasonable, at 
least for chains of the length used in this study.

Figure S1: Correlation of the absolute value of chain HOMO energy with chain ionisation potential for ca. 4000 
samples.

S2. Comparison of results obtained for different functionals and basis sets

To confirm that the conclusions observed in the main manuscript do not change with long-range 
corrective functionals and are basis set independent, HOMO energies were calculated for a small 
sample of 64 neutral chains extracted from a simulation trajectory with 50% charged chains using 
CAM-B3LYP/3-21G*, LC-wHPBE/3-21G*, and LC-wHPBE/6-31G* levels of theory (in addition to the 
original B3LYP/3-21G*). Figure S2a shows a very strong correlation between all levels of theory. The 
correlation between two functionals (one with long-range correction) is plotted in Figure S2b, which 
shows an expected shift in absolute HOMO energies, but this does not influence any of the results as 
this shift is maintained for different levels of doping (also shown).
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Figure S2: (a) Correlation heatmap for HOMO energy computed with different functionals and basis sets for a 
sample of 64 chains extracted from a simulation with 50% of the chains charged. (b) Scatter plot comparing the 
results of two functionals (one with long-range correction) sampling from 5% charged (green) and 50% charged 
(blue) simulations.

S3. Verification of DFTB implementation for charge-update

The original implementation1 of the method used to update the excess charge along polymer chain 
backbones used the B3LYP/3-21G* level of theory for the QC part, achieving simulation speeds of 
approximately 0.5 ns-1

 day-1 node-1. Since in this study we need to generate trajectories much longer 
than those reachable in this implementation, the QC part of the scheme was replaced with the self-
consistent charge density functional tight-binding method (SCC-DFTB), which increased performance 
to ~10 ns-1

 day-1 node-1. To verify that this method approximated – with sufficient accuracy – the results 
of the initial approach, the excess charge distribution was calculated for both levels of theory for 16 
p(g2T-T) chains extracted from a single MD snapshot (see Figure S3). We note a close match in excess 
charge distribution in all but one case, where a minor difference is seen due to convergence to 
different states. 



Figure S3: Computed excess charge over thiophenic rings for 16 cationic p(g2T-T) chains extracted from a single 
MD snapshot, using either B3LYP/3-21G* (blue) or SCC-DFTB (red). 

S4. Additional equilibration figures

For the purpose of designing a suitable annealing protocol, the glass transition temperature TG of 
p(g2T-T) was estimated via a bilinear fit of the specific volume-temperature curve (Figure S4a), using 
data derived from a simulation of the bulk polymer whereby the simulation temperature was gradually 
quenched (at 0.02 K/ps) from 900K to 100K. TG was found to be 523K from this fitting, and thus the 
temperature of 550K used in the annealing protocol is reasonable. We also show the root mean square 
deviation of the centre of mass of p(g2T-T) chains at 550K in Figure S4b, which is ~1nm in 2ns and 
confirms that chains are no longer glassy at this temperature.

Figure S4: (a) Fits to the two linear regimes of the specific volume-temperature curve of bulk p(g2T-T). The glass 
transition temperature is estimated from the intersection between these fits. (b) Root mean square deviation 
of the centre of mass of p(g2T-T) at 550K.

S5. Additional calculations on ‘bulk’ system

Additional analysis was performed to further unravel the origin of the large electrostatic disorder 
observed in bulk p(g2T-T). To accomplish this, calculations were performed on chains extracted from 



MD without inclusion of point charges (i.e., in vacuum) – essentially modelling only the disorder 
induced by the backbone conformation. In Figure S5 we plot the distribution of HOMO energy in 
vacuum alongside the distribution when all surrounding point charges are included (electrostatic 
embedding). The standard deviation is very small in comparison, which indicates that only a small 
proportion of the overall disorder derives from backbone flexibility, and the majority is due to 
interaction between the chain and oligo(ethylene glycol) (OEG) side-chains.

Figure S5: HOMO energy distributions for chains extracted from simulation of bulk p(g2T-T). ‘Vacuum’ refers to 
calculations performed on isolated chains and ‘Electrostatic embed.’ to those with all surroundings included as 
point charges.  

S6. Model calculation for charged system results

To validate the positive shift of HOMO energies observed for the doped systems in Figure 3b of the 
manuscript, calculations were performed for a model p(g2T-T) chain whereby 100 samples were 
generated by placing two equal and opposite point charges at a random distance 4-10 Å away from 
the closest atom in the chain. The distribution of calculated HOMO energies for the 100 samples is 
shown in Figure S6a alongside the HOMO energy of the isolated chain. The mean of this distribution 
is shifted towards more negative values by 0.24 eV compared to the isolated chain, which 
demonstrates the – on average – stabilising impact of greater electrostatic disorder. 

Figure S6: (a) Distribution of chain HOMO energy for 100 samples of a model chain surrounded by two equal 
and opposite point charges compared with the HOMO energy of the isolated chain. (b) Example of a structure 
containing the central chain and two surrounding point charges.

S7  Time evolution of charge in a dynamic disordered landscape



This section describes the steps required to perform the simulation of the dynamics of a single 
carrier in a disordered landscape where the on-site energies are fluctuating in time. 

S7.1 Numerical integration of 1st order rate equation with time dependent rates

The differential rate equation is:

𝑑𝑃𝑗

𝑑𝑡
= ‒ ∑

𝑖 ≠ 𝑗

𝑘𝑗→𝑖𝑃𝑗 + ∑
𝑖 ≠ 𝑗

𝑘𝑖→𝑗𝑃𝑖

Where  is the population in state . We will be using this expression to describe charge hopping so a 𝑃𝑗 𝑗

different state j corresponds to a different location in space.

Suppose that rates are time dependent i.e . The differential can be replaced with a finite 𝑘𝑗→𝑖 ≡ 𝑘𝑗→𝑖(𝑡)

difference  and time discretised so that  (and therefore ). 

𝑑𝑃𝑗

𝑑𝑡
≃

𝑃𝑗(𝑡𝑛 + 1) ‒ 𝑃𝑗(𝑡𝑛)

𝑡𝑛 + 1 ‒ 𝑡𝑛 𝑡𝑛 = 𝑛𝛿𝑡 𝑡𝑛 + 1 ‒ 𝑡𝑛 = 𝛿𝑡

The first equation becomes

 
𝑃𝑗(𝑡𝑛 + 1) = 𝑃𝑗(𝑡𝑛)(1 ‒ ∑

𝑖 ≠ 𝑗

𝑘𝑗→𝑖(𝑡𝑛)𝛿𝑡) + ∑
𝑖 ≠ 𝑗

𝑘𝑖→𝑗(𝑡𝑛)𝛿𝑡𝑃𝑖(𝑡𝑛)

and the numerical procedure is accurate as long as  is chosen to be small enough that 𝛿𝑡

 (otherwise one can get negative populations).
∑
𝑖 ≠ 𝑗

𝑘𝑗→𝑖(𝑡𝑛)𝛿𝑡 ≪ 1

S7.2 Rates in the presence of time dependent on-site energy

In this work we resort to the Miller-Abrahams rate expression shown below:

 
𝑘𝑗→𝑖(𝑡) = {𝑘0(𝑅𝑖𝑗)                                        𝑖𝑓  𝐸𝑖(𝑡) ≤ 𝐸𝑗(𝑡)

𝑘0(𝑅𝑖𝑗)exp ((𝐸𝑗(𝑡) ‒ 𝐸𝑖(𝑡))/𝑘𝐵𝑇)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒� 
Where  depends on the distance between states i and j.𝑘0(𝑅𝑖𝑗)

S7.3 Generating a sequence of normally distributed values with various degrees of correlation 

Consider a particle in 1D with coordinate x, experiencing a potential energy  and moving 
𝑉(𝑥) =

1
2

𝑎𝑥2

in the overdamped regime (i.e. large friction). The trajectory of this particle can be described by the 

following algorithm. At time  the particle is in position  and has energy . A small 𝑡𝑛 𝑥(𝑡𝑛) 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
1
2

𝑎𝑥(𝑡𝑛)2

displacement  (can be positive or negative) is generated randomly and the corresponding new Δ𝑥

energy is computed as . The new position is accepted with probability 
𝑉𝑓𝑖𝑛𝑎𝑙 =

1
2

𝑎(𝑥(𝑡𝑛) + Δ𝑥)2

. If accepted, the new position will be  min (1,exp ((𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ‒ 𝑉𝑓𝑖𝑛𝑎𝑙)/𝑘𝐵𝑇))) 𝑥(𝑡𝑛 + 1) = 𝑥(𝑡𝑛) + Δ𝑥

otherwise the new position will be  This algorithm produces a sequence of  𝑥(𝑡𝑛 + 1) = 𝑥(𝑡𝑛). 𝑥(𝑡𝑛)

distributed normally with standard deviation .  It may be convenient to set  and 𝑘𝐵𝑇/𝑎 𝑘𝐵𝑇 = 𝑎 = 1

consider the algorithm in this paragraph as a means to generate a sequence of  distributed 𝑥(𝑡𝑛)

normally with unit standard deviation. The parameter  determines how correlated the sequence is Δ𝑥

(  produces an uncorrelated sequence and  produces a very correlated Δ𝑥 > 𝑘𝐵𝑇/𝑎 Δ𝑥 << 𝑘𝐵𝑇/𝑎

sequence). 



If one wants to generate a sequence of energies with standard deviation  they are obtained from 𝜎𝐸

the sequence of .  As there are many energies that fluctuate, we use the notation 𝐸(𝑡𝑛) = 𝜎𝐸𝑥(𝑡𝑛)

.  The rate in the general case can be written as 𝐸𝑗(𝑡𝑛) = 𝜎𝐸𝑥𝑗(𝑡𝑛)

 𝑘𝑗→𝑖(𝑡) = 𝑓(𝑘0(𝑅𝑖𝑗),𝜎𝐸,𝑥𝑖(𝑡),𝑥𝑗(𝑡)) 

S7.4 Units for the implementation and parameters range

Considering a lattice of sites with distance ,  is the fastest hopping rate and it is set to 1, i.e. 𝑑 𝑘0(𝑑)

 is the unit of time.  , i.e. it is the unit of energy.1/𝑘0(𝑑) 𝑘𝐵𝑇 = 1

 is the integration step, which should be chosen so that the results do not depend on its value. It 𝛿𝑡

this work it was chosen to be 0.05, i.e. 20 times shorter than the fastest hopping time. 

 is the standard deviation of the energy, it will be much larger than  and a starting value could 𝜎𝐸 𝑘𝐵𝑇

be 15 . In these units 𝑘𝐵𝑇 𝐸𝑗(𝑡) ‒ 𝐸𝑖(𝑡) = 𝜎𝐸(𝑥𝑗(𝑡) ‒ 𝑥𝑖(𝑡))

 determines how rapidly the energy changes. The implementation is much easier if the energy is Δ𝑥

updated every integration step . The parameter is best considered as  because  is the 𝛿𝑡 Δ𝑥/𝛿𝑡 1/𝛿𝑡

number of integration steps that take place in one typical hopping time and  is therefore a Δ𝑥/𝛿𝑡

measure of how much the energy moves in a typical hopping time.  represents energy Δ𝑥/𝛿𝑡 ≪ 1

moving more slowly than the hopping time while  is energy moving as rapidly as the Δ𝑥/𝛿𝑡 ∼ > 1

hopping time. In the main manuscript, we reported as a parameter of the model  rather than , 𝜏𝑓𝑙𝑢𝑐𝑡 Δ𝑥

defined as the time required for the autocorrelation function of the on-site energy to become 0.5 (i.e. 
a characteristic time for the fluctuation for easier interpretation of the results).

S7.5 Initialization of on-site energy

It is convenient that at the beginning of the simulation the particle is in a site with energy drawn from 

the correct distribution , which is a Gaussian 𝑃(𝑥)~exp ( ‒ 𝑥2/2)exp ( ‒ 𝑥𝜎𝐸) = exp (( ‒ 𝑥2 ‒ 2𝑥𝜎𝐸)/2)

distribution of standard deviation 1 centered on . In the code this means that the site where 𝑥 =‒ 𝜎𝐸

the carrier is placed is decreased in energy by .‒ 𝜎𝐸
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