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Figure S1. SEM images of LMT-25 (a, b) and ALMT-25 (c,d) with corresponding EDS

elemental mapping results for Ga.
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Before Stretching After Stretching
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Figure S2. SEM images of LMT-45 (a, b) and ALMT-45 (c,d) with corresponding EDS

elemental mapping results for Ga.

Figure S3. Micro-CT image of LMT-35 during stretching.
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Figure S4. Resistance versus strain of LMT-35 (rate = 0.1, 1, and 10 mm/s).

2/10



1E+06

1E+05f
—_— + 3
g e
@ 1E+03 |
g
F1E+02}
k]
i
1E+00}
1E-01}
1E-02

=—0=—LMT-25

Strain (%)

0 100 200 300 400 500 600 700 800 900

Figure S5. Resistance versus strain of LMT-25 (rate = 0.1 mm/s).

400% strain| 44

AV

a
20l @ -
Calculated volumetric e
conductivity of ALMT-45 £
30t > P
- =
Bulk cond « £ 40
F 20 ulk con uctu; . E
e 1 103§
L
10 g
- o
- o
0 i i ALMT-45 AR/R.=0.28
L s : L L 102
0 100 200 300 400 500 0
Strain (%)

200

400

Cycle Nmuber

600 800 1000 500

Cycle Nmuber

505

Figure S6. (a) Relative change in resistance and corresponding volumetric conductivity of

ALMT-45 under strains of up to 550%, and theoretical relative change in resistance of the bulk

conductor. (d) Relative change in resistance of ALMT-45 over 1000 cycles to 100% and 400%

strain.

Assume that the resistance, thickness, widths, length, volume, electrical resistivity, and

conductivity of the sample at time t is Rt, Tt, Wt, Lt, Ve=W,T.L
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t, Pt and %, respectively.

The volume of the sample is assumed to be constant during stretching (VO - Vt),
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(a) If the conductivity of the sample remains constant during stretching (0 = %),
R
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(b) If conductivity changes with strain,
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Figure S7. The EMI SE curves of ALMT-25.
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Figure S8. Thickness variation of ALMT-35 under different strains.

Squatting

0 20 40 60 80 100
Time (s)

4/10



Figure S9. Relative resistance change of the ALMT sensor at the knee joint during squatting.

Table S1. Comparisons of stretchable conductors reported in recent literature.

. . ARt/R0 at max
Type Filler Matrix gmax o0 (S/cm) strain ot (S/cm) QF Ref.
(%*‘VI(‘)‘]SO/“) TPU 700% 266 0.57@700% 14000@700% 12@700% This
()
(E?ilc?l?/n) TPU 550% 378 0.28@550% 12700@550% 20@550% work
(]
EFC; a;grstifensd Ecoflex 600% / / 25000@400% / 1
33136 fgiﬁ Ecoflex 510% 5300 / 11000@510% / 2
EGaln SBS 1800% 100 0.04@1800% / 2-441@1800% 3
EGaln VHB ~1200% 20600 ~3.5 @1200% / ~3.4@1200% 4
40~70
~ 0, o V)
EGaln + Ag SIS 1200% 8210 @1200% / 0.3~3@1200% 5
EGaln 11-PUA 744% 2500 0.85@700% 20000@700% 8.2@700% 6
11100@300%
0, 0, 0,
o EGaln TPU 1000% 4200 20@1000% 3R00@1000%  O-5@1000% 7
Liquid 0.34@1000% 29.4@1000%
metal EGaln TPU 2260% 22532 1.59@1600% / 10.06@1600% 8
fillers 31.6@2266% 0.74@2266%
EGaln TPU 4100 21000 19.8@4100% / 9.3@4100% 9
EGaln PVDF 740% 435 4@740% / 1.85@740% 10
EGaln + Ag EVA 1000% 8331 10@1000% / 1@1000% 11
EGaln + Ag SIS 100% 6380 6.78@1000% / 1.47@1000% 12
EGaln + Ag PUA 2500% 6250 9@2500% / 2.78@2500% 13
EGaln + Ni CE_(QAATC) 630% 2000 5.4@630% / 1.17@630% 14
EGaln SEBS 900% 34000 39@700% / 0.2@700% 15
EGaln PVP 800% 6900 60@800% 100 ~0.13@800% 16
EGaln SIS 2500% 30000 37@2500% / ~0.68@2500% 17
Rigid AgNPs SEBS 180% 11.4 1.05@180% 84.6@180% 1.7@180% 18
metal .
fillers Ag flakes Frllllfégf 215% 738 ~39.2@215% ~180@215% ~0.055 19
Ag flakes Frll‘;‘l‘)’tr)‘erf 400% 4000 ~106 @ 400% 950@400% ~0.038 20
PAAmM
Ag flakes alginate 250% 374 70 @250% / ~0.036 21
hydrogel
Rigid Ag flakes Ecoflex 1780% ~133 153 @ 1780% / ~0.12 22
metal AuNPs TPU 115% 11000 ~202 @115% 210@110% ~0.057 23
fillers
AgNW PNIPAM 800% 93 3@700% / ~2.3@700% 24
AgNW/Au SBS 840% 30000 ~2649 @840% 3000@840% ~0.003 25
Cu rubber 100% 215 / 2@100% / 26
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ARt/R0 at max

Type Filler Matrix emax 60 (S/cm) strain ot (S/cm) QF Ref.
CNT+AgNW PVDF 140% 5710 ~1306 @140% 20 ~0.001@140% 27
Fluorine o N 0 ~ 0
CNT rubber 118% 10 3.75@118% 10 0.3@118% 28
Carbon Fluorine
materials CNT rubber 134% 57 ~51@134% 6 ~0.026@134% 29
CNT PDMS 150% 1100 4@150% / 0.375@150% 30
CNT PU 300% 0.05-1 3.2@300% / 0.9@300% 31
SBS: poly(styrene-block-butadiene-block-styrene
VHB: 3M VHB tape
SIS: Styrene—isoprene block copolymers
11-PUA: 11-(phosphonoundecyl)acrylate
PVDF: polyvinylidene difluoride
EVA: Ethylene-Vinyl Acetate
PUA: polyurethane acrylate
P(AAm-co-MAACc): Poly(acrylamide-co-methacrylic acid)
SEBS: poly[styrene-b-(ethylene-co-butylene)-b-styrene]
PVP: Polyvinyl pyrrolidone
PAAm: polyacrylamide
PAM: Polyacrylamide
PNIPAM: poly(N-isopropyl acrylamide)
PU: polyurethane
Table S2. Comparisons of stretchable EMI shielding materials reported in recent literature.
Thickness SSE
. . c o
Type Filler Matrix Strain (%) (mm) SE (dB) (dB /mm) Ref.
EgalnSn 0
(35 vol%) TPU 0-400% 0.075-0.051 58.1-63.8 774-1241 This
EgalnSn TPU / 0.094 80.9 860.6 work
. (45 vol%)
Liquid EGalnSn and
metal . Ecoflex 0-400% 0.8-0.2 20.6-80.7 25.8-404 1
Fe particles
fillers 3D EBilnS
S Ecoflex 0-400% 2-3.6 57.0-85.0 15.8-42.5 32
network
3D EGaln Ecoflex 0-400% 2-1 41.5-81.6 20.8-81.6 2
network
EGaln PDMS 0-50% 24 50.0-43.5 20.8-18.1 33
EGaln PDMS 0-100% 3 ~37.0 12.3 34
EGalnSn PDMS 0-75% 0.15-0.11 43.2-44.2 288-401 35
Liquid EGalnSn PDMS/Textile 0-50% 0.35 72.6-52.4 149.7-207.4 36
metal EGaln and
fillers CNT PAM and gelatin 0-200% 1-0.22 17.7-37.4 17.7-170.0 37
ESnBi PVDF / 2 68.8 34.4 38
EGaln CNF / 0.1 40.5 405.0 39
EGaln EM / 1 90.6 90.6 40
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Thickness SSE
. . .o
Type Filler Matrix Strain (%) (mm) SE (dB) (dB /mm) Ref.
EGaln and Ag SEBS 300% 0.2 73.5 367.5 41
NPs
EGaln foam / / 5 65.0 13.0 42
AgNPs SEBS 0-100% 2.84 28.0-55.0 19.4-9.9 18
Rigid
metal AgNWs PU 0-30% 0.6 63.9-56.2 106.5-93.7 43
fillers
Cu rubber 0-75% 0.4 35.7-10.7 89-26.7 26
CNT PU 0-30% 2.9 36.4-20.2 12.6-7.0 44
CNT TPU 0-200% 2-1.56 34.6-12.8 17.3-8.2 45
Carbon rGO PDMS 0-100% 24 25.0-18.0 10.5-7.5 46
materials
MXene PU 0-30% 0.2 22.0 105.0 47
MXene TPU 0-70% 03 31.4-22.0 104.7-73.3 48

PDMS: Polydimethylsiloxane
CNF: Cellulose nanofibers
EM: expandable microsphere
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