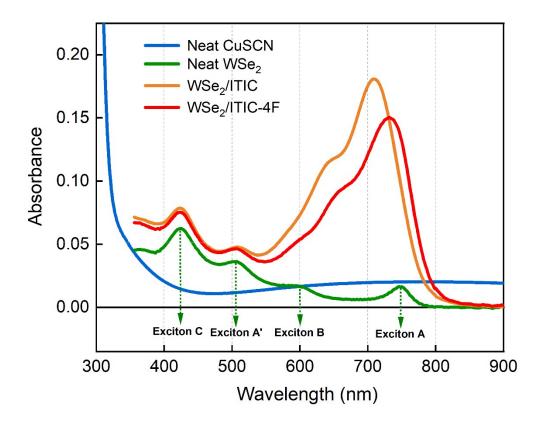
SUPPORTING INFORMATION

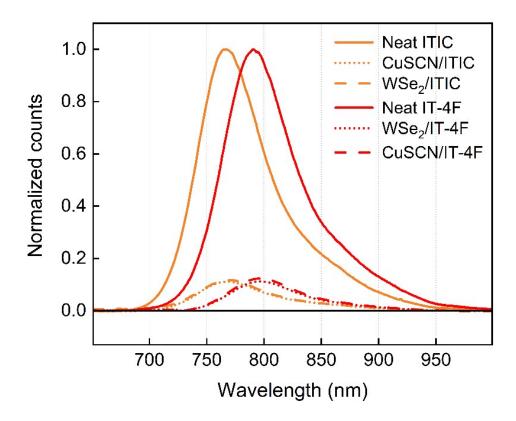
Mitigating triplet loss in 2D WSe₂/non-fullerene heterostructures using halogenated acceptors

Sreelakshmi Chandrabose^{*}, Ana M. Valencia^{+,\$}, Meysam Raoufi^{*}, Nisreen Alshehri^{%,£}, Tracey M. Clarke[#], Frederic Laquai^{%,£}, Caterina Cocchi^{+,\$}, Dieter Neher^{*}

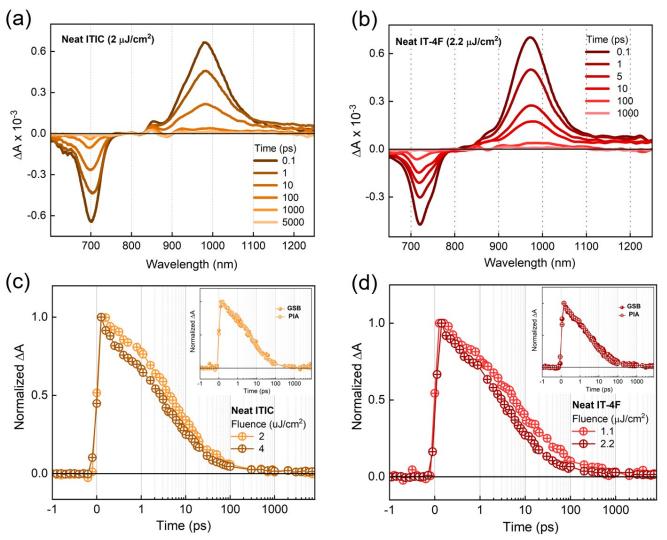
* Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476, Germany

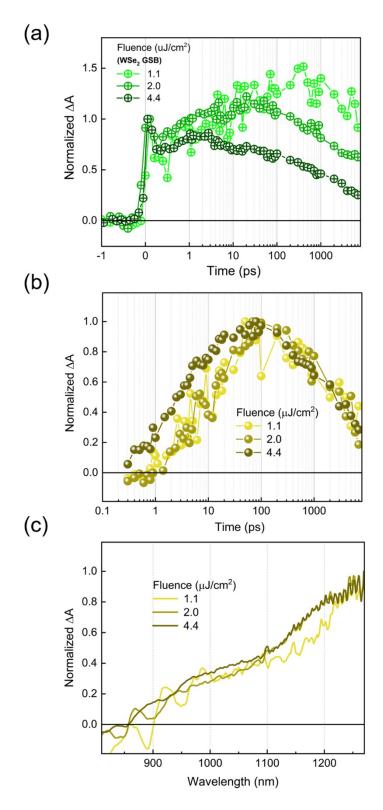

⁺Carl von Ossietzky Universität Oldenburg, Institute of Physics and Center for Nanoscale Dynamics, 26129 Oldenburg, Germany

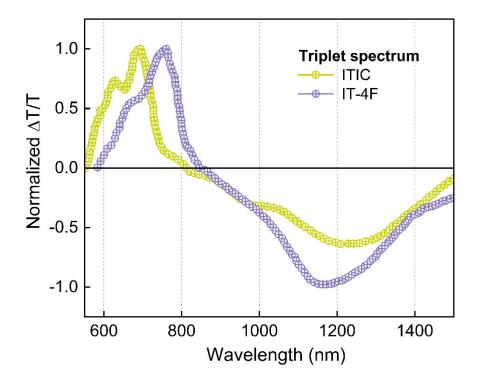
\$ Institut für Physik & IRIS Adlershof, Humboldt- Universität zu Berlin, 12489 Berlin, Germany.

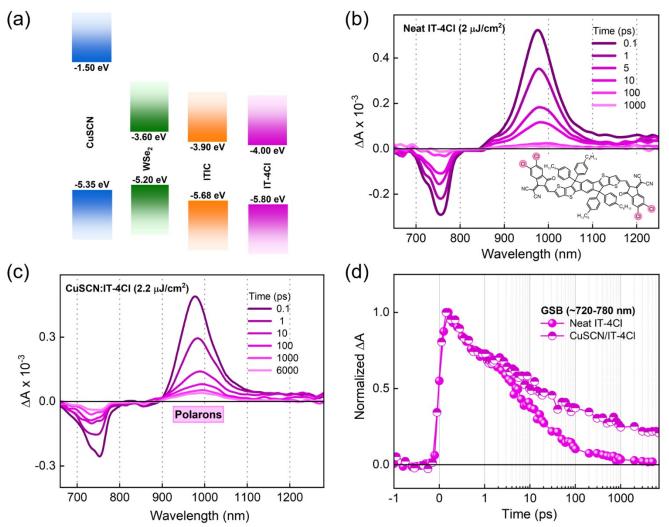

[%] KAUST Solar Center, Physical Science and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Ab dullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.

#Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom


£ Physics and Astronomy Department, College of Sciences, King Saud University, Riyadh 12372, Kingdom of Saudi Arabia


Figure S1. **Steady state absorption spectra**. Steady state optical absorption spectra of donor materials, monolayer WSe₂, CuSCN (~100 nm) and ML-WSe₂/NFA bilayers.


Figure S2. **Photoluminescence quenching in bilayers**. Steady state photoluminescence quenching measurements in various bilayers (CuSCN/ITIC, WSe₂/ITIC, CuSCN/IT-4F, and WSe₂/IT-4F).


Figure S3. Transient absorption in neat NFA films. Series of transient absorption spectra of neat NFAs, (a) ITIC and (b) IT-4F, all excited at a pump wavelength of 700 nm and at fluence of $\sim 2 \mu J/cm^2$, and fluence dependent exciton dynamics of neat NFAs (c) ITIC and (d) IT-4F. The inset figures show the corresponding dynamics of ground state bleach (GSB) and photoinduced absorption (PIA) features.

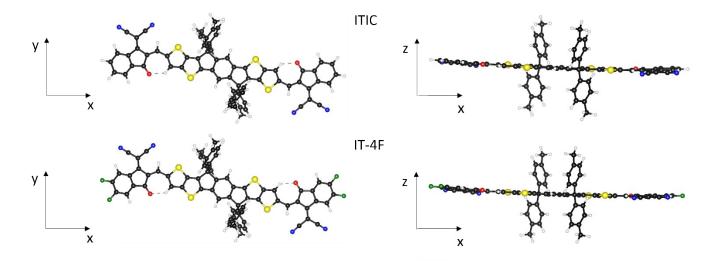
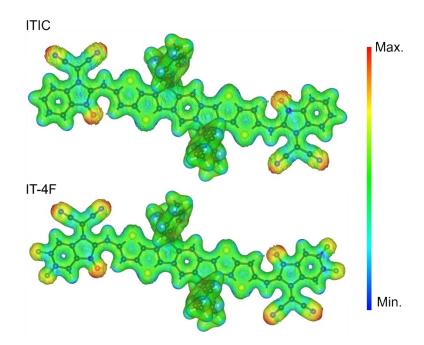
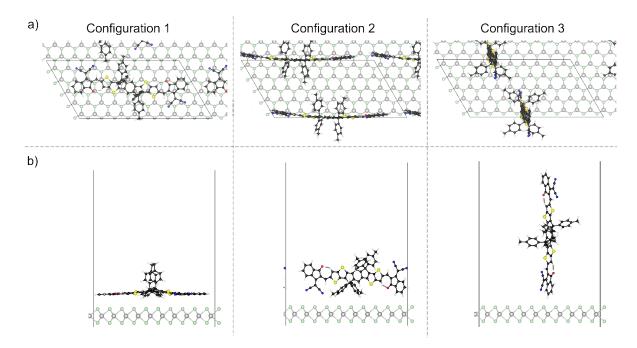
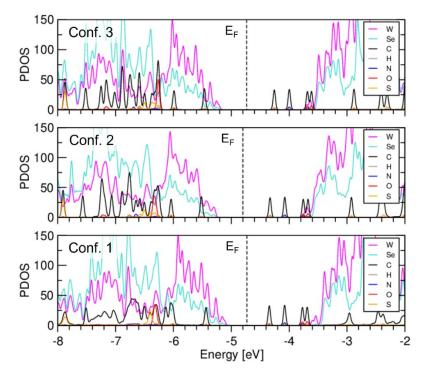
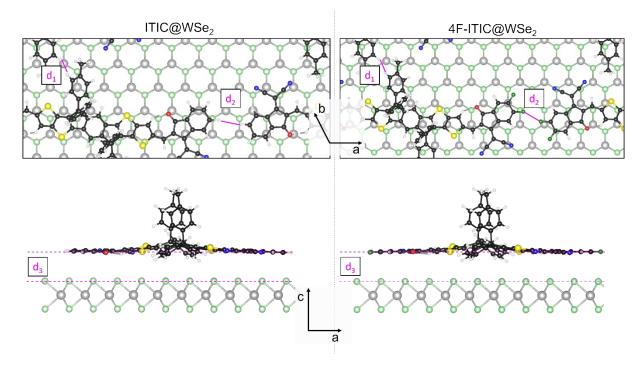

Figure S4. Formation of triplet excitons from charges. (a) Fluence dependent kinetics of holes, probed at WSe₂ hole GSB at 745 nm, (b) fluence dependent kinetics and (c) spectra of triplet excitons obtained after spectral decomposition in the 800-1270 nm region using MCR-ALS algorithm.

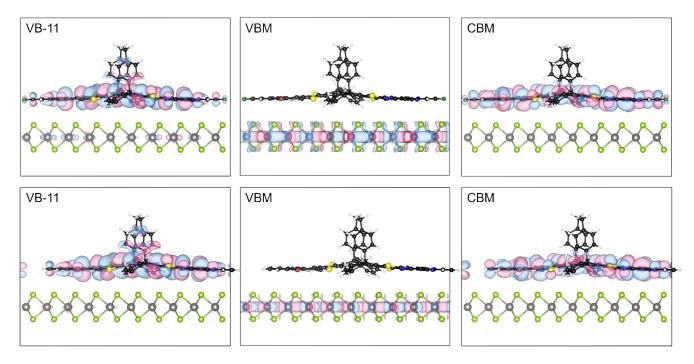
Figure S5. **Triplet sensitization in NFAs**. Normalized triplet spectra of NFAs, measured using steady state photoinduced absorption (PIA) (ITIC) and long delay TAS (IT-4F). The PIA measurements were carried out on heavy metal (PtOEP) doped NFA film after an excitation at 510 nm and at a temperature of 80 K, while long delay TAS measurements were done by exciting the films at 532 nm under vacuum.

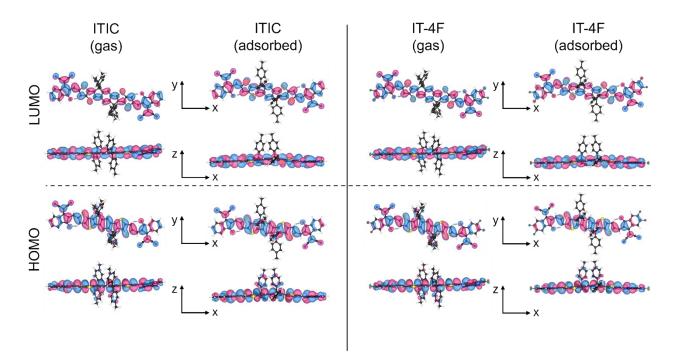
Figure S6. **Charge generation in bilayer with IT-4Cl**. (a) Energy level diagram of donor materials, CuSCN, ML-WSe₂, and acceptors ITIC and IT-4Cl, series of transient absorption spectra of (b) neat IT-4Cl (molecular structure is shown in the inset) and (c) CuSCN/IT-4Cl, and transient kinetics probed at the GSBs of neat IT-4Cl and CuSCN/IT-4Cl (all excited at 700 nm and at a pump fluence of $2.2 \,\mu$ J/cm².)

Figure S7: Ball-and-stick representation of isolated ITIC molecule (top) and its halogenated counterpart, IT-4F (bottom) relaxed *in vacuo*. C atoms are depicted in dark grey, H atoms in white, F atoms in green, O atoms in ref, N atoms in blue, and S atoms in yellow.


Figure S8: Electrostatic potential calculated for ITIC (top) and IT-4F (bottom) in the gas phase.


Figure S9: a) Top and b) side view of the optimized structures of the hybrid interface formed by ITIC adsorbed on monolayer WSe₂ in three different configurations. The grey continuous lines mark the lateral supercell boundaries. Configuration 1 is the most stable one with a total energy $E_{tot} = -29420700$, 930 eV followed by Configuration 2 ($E_{tot} = -29420699$, 854 eV) and Configuration 3 ($E_{tot} = -29420699$, 160 eV). Based on these results, we focus solely on Configuration 1 in the analysis of the electronic structure.


Figure S10: Projected density of states (PDOS) of ITIC adsorbed on ML-WSe₂ (10x5) supercell in three different configurations (Fig.S9) calculated with PBE functional. A Gaussian broadening of 20 meV is applied in all plots.

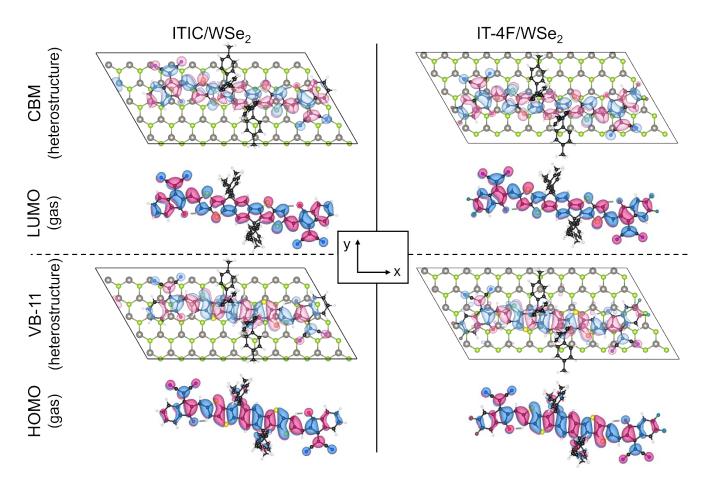

Figure S11: Optimized structures of WSe₂/ITIC (left panel) and WSe₂/IT-4F (right panel). d_1 is the shortest lateral distance between the H atoms in the aromatic carbon rings (**b**-direction), d_2 is the same distance in the **a**-direction, and d_3 the average distance between the molecule and the Se atoms in WSe₂.

Figure S12: Selected electronic states of WSe₂/IT-4F (upper panels) and WSe₂/ITIC (lower panels) visualized by their isosurfaces (10% of the maximum value) at the Γ -point. CBM stands for the conduction band minimum and VBM for the valence band maximum.

Figure S13: Side and top view of the HOMO (highest occupied molecular orbital) and the LUMO (lowest occupied molecular orbital). ITIC (left panels) and IT-4F (right panels) visualized by their isosurfaces (10% of the maximum value). In the gas-phase molecules in their optimized geometries and constrained in the geometry they assumed upon adsorption on WSe₂ (adsorbed).

Figure S14: Top view of the HOMO (VB-11) and the LUMO (CBM) of NFA in gas-phase (herostructure). Left panel ITIC and ITIC/WSe₂ and right panel IT-4F and ITIC/WSe₂ visualized by their isosurfaces (10% of the maximum value).

Non-fullerene acceptor (NFA)	Absorption coefficients (10 ⁵ cm ⁻¹)	Monomolecular lifetime (ps)	Exciton diffusion length (nm)
ITIC	1.10	394	31.9
IT-4F	1.16	351	47.4

Table S1. Summary of selection parameters of NFAs. Absorption coefficients, monomolecular exciton lifetimes and exciton diffusion lengths of NFAs, ITIC and IT-4F^{[1][2][3]}.

	d ₁	d ₂	d ₃
WSe ₂ /ITIC	2.08	2.84	3.5
WSe ₂ /4F-IT	2.05	2.76	3.5

Table S2: Lateral (d_1 and d_2) and vertical distance (d_3) between the molecule and the monolayer in the considered hybrid heterostructures see **Figure S10**. All values are given in Å.

	ITIC@WSe ₂	ITIC	ITIC (gas-	IT-	IT-4F	IT-4F (gas-
		(absorbed)	phase)	4F@WSe ₂	(absorbed)	phase)
HOMO [eV]	-5.30	-5.59	-5.61	-5.34	-5.74	-5.76
LUMO [eV]	-4.25	-4.00	-3.94	-4.34	-4.17	-4.12
E _{gap} [eV]	1.05	1.59	1.67	1.00	1.57	1.64
Dipole		3.76	0.79		3.80	0.26
moment						
[Debye]						

Table S3: Frontier energy values and energy gap (E_{gap}) computed from DFT (HSE06+SOC functional) for the hybrid interfaces and the gas-phase molecules in their optimized geometries and constrained in the geometry they assumed upon adsorption on WSe₂ (adsorbed).

NFAs	E _{S1}	E _{T1}	$\Delta E_{ST} = E_{S1} - E_{T1}$
ITIC	1.85 eV	1.22 eV	0.63 eV
IT-4F	1.82 eV	1.21 eV	0.61 eV

Table S4: Results obtained within the density functional theory (DFT) and time-dependent DFT (TDDFT) framework to study the optical properties of NFAs molecules. All TDDFT calculations are performed using the Gaussian 16 package^[4]. We used the Becke three-parameter Lee–Yang–Parr (B3LYP)^[5] and Gaussian-type cc-pVTZ basis set^[6]. E_{S1} is the first singlet excitation, E_{T1} is the first triplet excitation, and ΔE_{ST} is the energy difference between T₁ and S₁ states.

REFERENCES

- [1] H. Zhang, H. Yao, J. Hou, J. Zhu, J. Zhang, W. Li, R. Yu, B. Gao, S. Zhang, J. Hou, *Advanced Materials* **2018**, 30, 1.
- [2] W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, J Am Chem Soc 2017, 139, 7148.
- Y. Firdaus, V. M. Le Corre, S. Karuthedath, W. Liu, A. Markina, W. Huang, S. Chattopadhyay, M. M. Nahid,
 M. I. Nugraha, Y. Lin, A. Seitkhan, A. Basu, W. Zhang, I. McCulloch, H. Ade, J. Labram, F. Laquai, D.
 Andrienko, L. J. A. Koster, T. D. Anthopoulos, *Nat Commun* 2020, *11*, DOI 10.1038/s41467-020-19029-9.
- [4] M. J. Frisch, et al. Gaussian 16 Rev. C.01 **2016**.
- [5] A. D. Becke, *J Chem Phys* **1993**, *98*, 5648.
- [6] D. E. Woon, T. H. Dunning, *J Chem Phys* **1993**, *98*, 1358.