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Supporting Table S1. Table of abbreviations and their meanings of the main text

Abbreviation Definition

OD Outlier detection

DC Data clustering

mf-CBA Multi-functional crossbar array

BC Binary code

M Hyperparameter for minority rate

MOD Minority-based outlier detection

MBC Minority binary code

HD Hamming distance

X & Y Do not care bit

T Number of trees

H Number of hyperplanes in each tree

R Hyperparameter for outlier determination

OCV Outlier count vector

K Number of centroids in K-means clustering

CBC Centroid binary code
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Figure S1. Analog domain VMM and proposed multi-functional CBA. (a) Conventional 

analog memristor-based VMM operation. For parallel computing, the state-tunable analog 

characteristics of the memristor are utilized to represent the weight of neural network or analog 

distances between data points. In this domain, the iterative pulse of weight 

potentiation/depression or incremental step pulse programming is applied to each cell in CBA, 

increasing programming time and energy. (b) Schematic design of the proposed mf-CBA for 

implementing outlier detection (OD) and data clustering (DC) algorithms. By changing the 

switching mode of the multi-functional memristor in arrays, the proposed mf-CBA could be 

reconfigured for stochastic or binary switching operations without additional computational 

overhead. The mf-CBA can be divided into two sub-arrays: (i) the S-array and (ii) the B-array. 

The mf-CBA configuration can be efficiently programmed using one-shot pulse mapping. In 

stochastic mode, memristors in the LRS state are subjected to pulses of intermediate voltage to 

result in stochastic IRS. In contrast, binary mapping is achievable in binary mode by applying 

set and reset pulses to both LRS and HRS states, respectively. These reconfigurable array 

mapping can implement the conceptual hyperplane and tree structure1–3 toward the multi-

purpose data mining hardware capable of simultaneously executing OD and DC.  
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Figure S2. The fabrication process of the THR memristor-based multi-functional crossbar 

array.
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Figure S3. Structural and elemental analysis of the THR memristor. (a) Depth profile of 

the THR device through Auger electron spectroscopy. Elements of Ta, Hf, Ru, and oxygen 

concentrations are demonstrated. (b) X-ray photoelectron spectroscopy of the stacked film with 

different etching times. The emergence of the primary peak shifts gradually from metal Ta (22 

to 24 eV) to Ta2O5 (27 to 29 eV) and subsequently to HfO2 (16 to 18 eV), with the sputtering 

time increment.4–7 (c) EDS element mapping (Ta, Hf, O, Pt, and Ru) results obtained by cross-

sectional TEM. 
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Figure S4. VRESET-dependent I-V switching characteristics. When VRESET = -2.5 V, stable 

binary switching of low state dispersion is observed, whereas significant resistance distribution 

in the IRS can be observed at VRESET ranging from -1.6 V to -1.9 V. These VRESET-dependent 

resistive switching stems from the two-step reset behavior of the THR memristor.8
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Figure S5. Reset behavior with a triangular reset pulse. (a) AC triangular pulse 

configuration to measure input voltage and current through the THR device. (b) µs-scale 

triangular voltage pulse to show the reproducibility of the 2-step reset process. The stop voltage 

can control the mode of operation between stochastic and binary modes.
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Figure S6. Pulse-driven mode reconfiguration. Pulsing application method and results of 

mode reconfigurations. (a) Pulsing scheme for multi-functional mode reconfiguration, where 

each binary mode and stochastic mode is repeated for 104 cycles. In binary mode, incremental 

pulses are applied to cycle between RB,LRS (103 Ohm) and RB,HRS (106 Ohm), while in stochastic 

mode, pulses cycle between RS,LRS (103 Ohm) and RS,IRS. To demonstrate the stochastic resistive 

dispersion, the value of RS,IRS is varied from 90,000 Ohm to 10,000 Ohm with 20,000 Ohm 

interval after every 104 cycles. (b) The read current values (VREAD = 0.1 V) for HRS, IRS, and 

LRS. In binary mode, due to the abrupt set behavior, reached RB,LRS is measured as a value 

smaller than the predetermined 103 Ohms, exhibiting a memory window greater than 103. In 

the case of RS,IRS = 10,000 Ohm, the THR memristor resets only in the gradual reset region, 

which corresponds to VRESET = -1.5 V case in Figure S4, showing the small distribution of IRS 

states.



9

Figure S7. Device switching endurance of the THR memristor. Endurance tests were 

performed by a custom-built FPGA board (Experimental Section), assigning the target HRS 

resistance of 105 Ohm and the LRS resistance of 103 Ohm. All resistance values are calculated 

with output current at read voltage of 0.1 V. All devices show > 105 switching cycles without 

degradation or dielectric breakdown. 



10

0 2000 4000 6000 8000 10000
10-7

10-6

10-5

10-4

 LRS
 IRS
 HRS

C
ur

re
nt

 [A
]

Time [s]

Figure S8. Retention characteristics of THR memristor at the temperature of 85 oC. 
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Figure S9. Binary mode I-V characteristics of 81 cells in 9 by 9 mf-CBA. Three separate I-

V curves demonstrate the intra-array reproducibility of binary mode operation.
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Figure S10. Stochastic mode I-V characteristics of 81 cells in 9 by 9 mf-CBA. Three 

different VRESET were applied to demonstrate the intra-array reproducibility of stochastic mode 

operation.
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Figure S11. Inter-array variation of THR mf-CBA. HRS (blue), IRS (green), and LRS (red) 

resistance values were obtained from the four arrays, with 9 devices per column, showing 

consistent average resistance values and distributions across the inter-array scale.
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Figure S12. Binary and stochastic mode I-V characteristics of 32 cells in 32 by 1 THR 

array. (a) Optical microscope image of THR array. (b) Binary mode operation of ten I-V cycles. 

(c) Stochastic mode operation of three I-V cycles with different VRESET.
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Figure S13. Schematic diagram of minority-based MOD process of 9-point dataset. (a) 

Randomly generated hyperplane tree structure and corresponding binary codes. Figure shows 

the calculated binary states of every data point using the MOD method of the main text. MBCs 

of each tree are determined with hyperparameter M of 25 %, and HDs of each tree are calculated 

between BCs and the MBC. For the outlier counting, hyperparameter R was settled to 25 %, 

which means that 2 with the lowest HD value among the 9 (2/9 = 22 % ~ 25%) components of 

the HD vector are supposedly assigned to be the outlier candidates. For trees #1, #2, and #4, 

there are two 1 and seven 2 HD components, so the data points with HD of 1 are assigned to be 

the outlier candidates, indicated by the red color in the corresponding HD vector. However, in 

the case of tree #3, the HD values are 1, 2, and 3, so the components with HD of 1 and 2 must 

be assigned to the outlier candidates. Here, four components have HD of 1 and 2 values, so all 

these four components are assigned to the outlier candidates. (b) Conversion of HD vectors into 

OCVs with the given hyperplane tree structure by changing the red and black colored values to 

1 and 0, following the outlier count rule (the lower panel of Figure 3d of main text). (c) Final 

outlier detection results of the 9-point dataset. The two data points with the two highest count 

sum values (A with 3 and I with 4) are determined to be outliers, as highlighted in red. These 

steps complete the MOD process within the 9-point dataset.
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Figure S14. MBC and CBC determination process. (a) MBC requires the minority vote rule 

process based on the binary states of the dataset. Therefore, B-Array calculates the number of 

'1's of binary states based on a single hyperplane. In the BC-mapped B-array (left panel), 

applying VREAD to a row (word line) and current readout through the right column (bit line) 

corresponds to the direct binary value reading of the mapped value (middle panel). Applying 

VREAD to all word lines and grounding the even-numbered bit lines results in the current output, 

including the number of "1" for each hyperplane (column). Based on these current values with 

the ratio of IHRS and ILRS values, the MBC vectors are acquired in the software following the 

methods described in Figure 3 of the main text. (b) CBC introduces centroid into the given 

dataset, and the CBC can be determined with S-Array. To determine CBC, voltage inputs of 

randomly generated centroids are applied to the S-array. The S-array holds an identical 

hyperplane tree structure, used to calculate BCs. 



17

Figure S15. Single-column conductance distribution of S-array. When examining the 

conductance distribution for each of the nine cells comprising the columns representing G+ and 

G- values over 20 cycles, it is observed that both G+ and G- columns exhibit lognormal 

distributions, indicating similar distributions in terms of mean and standard deviation. 

Therefore, their difference comprises the Gaussian distribution of differential conductance 

shown in Figure 4d of the main text. 
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Figure S16. Histogram of 100 differential conductance trials at different VRESET values. (a) 

VRESET = -1.7 V. (b) VRESET = -1.8 V. (c) VRESET = -1.9 V. (d) VRESET = -2.1 V. (e) VRESET = -

2.3 V. (f) VRESET = -2.5 V.



19

Figure S17. Differential conductance mapping distribution within a 32 by 1 THR array. 

Each device is reset to VRESET = -1.8 V for every trial, and the differential conductance is 

calculated based on the difference in conductance mapped for each trial (state read at 0.1 V). 

(a) Results for 100 trials. (b) Results for 400 trials. (c) Results for 700 trials. As the number of 

trials increases, the distribution of differential conductance among devices becomes more 

uniform.
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Figure S18. Histogram of differential conductances within a 32 by 1 THR array.
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Figure S19. Data mining process flowchart and circuit block diagram of array 

measurement system. (a) Flow chart of proposed data mining method. (b) Photograph of the 

multi-probe. (c) Photograph of SPA and switch matrix. (d) 9 by 9 array measurement system. 
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Figure S20. Generated hyperplanes and S-array current output. (a) Generated random 16 

hyperplanes in four trees. (b) Measured current output by applying a voltage of point 

coordinates in the S-array corresponding to each tree. The sign of the output current, represented 

in green and blue, can identify the relative positional relationships of 9 points regarding a single 

hyperplane.
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Figure S21. B-array operation schematic and output current of binary code-mapped B-

array with 9-point dataset. (a) For OD, MBCs are applied as a voltage to bit lines to calculate 

HD between mapped BCs and applied MBCs as a current output in word lines. These calculated 

HDs are handled in software to detect outliers. (b) For DC, CBC calculated from S-array are 

applied as a voltage to bit lines, and corresponding HD current between BCs and CBCs are 

handled into software for K-means clustering. (c) Mapped BCs of four tree structures based on 

Figure S20 with four mf-CBAs. The current outputs read at 0.1 V are depicted, with LRS 

currents represented in red and HRS currents in blue.
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Figure S22. Simulated hardware characteristics of binary and stochastic mode switching 

behavior. (a)  Experimental I-V curves in the binary mode THR device. (b) Simulated I-V 

binary response with the memory diode model explained in Supporting Note 3. (d) 

Experimental I-V response of the stochastic mode for the THR response. (d) Simulated I-V 

stochastic response with the memory diode model explained in Supporting Note 3.
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Figure S23. The MOD method results with additional datasets (DS1-DS4). (a) Detected 

outliers of a given dataset. (b) F1 score of MOD method of each dataset.
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Figure S24. Comparison of K-means clustering results. (a) The centroid movement in the 

iris dataset (K=3). Grey points represent the original data points, and the green, blue, and yellow 

points show the generated centroids' update. (b) Process flow of K-means clustering with mf-

CBA. (c-d) Comparison of the data clustering process with and without outliers of the iris 

dataset. Due to the robustness of the proposed MOD method, the proposed method clusters the 

original outlier-free iris dataset appropriately, as shown in (c). Meanwhile, the outlier-removed 

dataset with MOD also results in the appropriate clustering results, as shown in (d).
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Figure S25. Combined effects of varying the number of hyperplanes and trees. The number 

of hyperplanes directly influences the number of valid minority bits involved in the outlier 

score, and the number of trees impacts the degree of the ensemble effect. Therefore, as both 

factors increase, the performance improves.
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Figure S26. Performances of data mining tasks with iris dataset according to state 

variation level and memory window of the THR device. (a) The calculated F1 score of OD 

as a function of the assumed variation level. (b) The calculated accuracy of K-means clustering 

as a function of the assumed variation level. (c) The calculated F1 score of OD as a function of 

the assumed on/off ratio (GLRS /GHRS). (d) The calculated accuracy of K-means clustering as a 

function of the assumed on/off ratio. (a)-(d) validate the feasibility of the proposed mf-CBA for 

hardware implementation of the proposed data mining methods. 
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Figure S27. Comparison of distance calculation in the iris dataset. (a) and (b) shows the 

results of calculated HDs and Euclidean distances between all data points in the iris dataset. HD 

values were calculated with simulated hardware, and the software calculated the Euclidean 

distances. Both heatmaps exhibit comparable patterns and are divided into 9 areas, reflecting 

that the iris dataset is divided into three clusters, with the different areas representing the intra-

cluster and inter-cluster distances. The diagonal areas correspond to intra-cluster distances, 

representing predominantly short-distance values. Conversely, the non-diagonal areas 

correspond to inter-cluster distances, demonstrating larger distance values than the diagonal 

case. This result shows that the binary projection of the S-array reflects spatial information 

accurately.
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Figure S28. Community detection results in situations where OD was performed and 

situations where OD was not performed. (a) Cases without OD. (b) Cases with OD
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Figure S29. Schematic circuit diagram for mf-CBA operation. The selection of the mf-CBA 

is implemented with decoders controlled by word line/bit line switches to apply input voltages 

into the S- and B-arrays selectively. In the operation of the S-array, spatial coordinates are 

applied to word lines as voltage, and the output current from bit lines is compared with zero to 

determine binary codes from the hyperplane structure. In the operation of the B-array, 

MBC/CBC is applied as input voltages to bit lines, and the corresponding Hamming distances 

are calculated based on the output current.
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Figure S30. Output current curves of pulse switching for the THR device. (a) SET 

switching response with 3 V, 100 ns pulse. (b) RESET switching response with -1.9 V, 100 ns 

pulse. Due to the stochastic mode reset operation, reset response curves show more significant 

curve fluctuation than set response.
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Supporting Note 1. Detailed description of the proposed OD and DC methods

1. The minority-based OD method

The following explains the three phases of the MOD method in detail. The first MBC 

determination begins by calculating the ratio of "1" s for each hyperplane. The upper middle 

panel of Figure 3d shows the "minority vote rule", which uses this ratio to determine the MBC. 

For the given hyperplane in the upper left panel, the only point I has a BC of "1", so the ratio 

of "1" to the total cases is 0.11 (= 1/9). When the hyperparameter M is arbitrarily taken as 0.25, 

the rule states that the "minority bit" for this specific hyperplane is "1" because the ratio of 0.11 

< 0.25. There could be another hyperplane, which produces the ratio > (1-M), i.e., 0.75, of 

which the minority bit becomes "0" following the rule. When the ratio is between these two 

values, the minority bit for that hyperplane is assigned to be X (do not care bit). Therefore, the 

relationship between the tree and all the points in the given dataset can be represented by the 

MBC vector with H components when H hyperplanes are assigned for a given tree. It should 

be noted that each component in a given MBC vector represents the property of the hyperplane, 

not a data point. For the T numbers of trees, there are T H-long-MBC vectors, as shown in the 

upper right panel of Figure 3d. This approach prioritizes regions with fewer data points 

("minority") as potential outlier locations.

Assigning several specific hyperplanes with the minority bit of X implies a pruning 

process for those hyperplanes lacking spatial minority information. When a specific hyperplane 

yields the "X" minority bit, information related to that hyperplane is excluded from subsequent 

phases. This exclusion is necessary because such a hyperplane tends to indicate a near-equal 

distribution of "0" s and "1" s, and, thus, to judge almost half of the data points as outliers, 

degrading the OD performance eventually. However, these hyperplanes are useful for similarity 

identification, as discussed later. 

The second phase calculates the HD between the MBC and all data points' BCs, serving 

as an outlier score for each point because the MBC was designed to be close to outlier 

candidates. It should be noted that the HD counts the number of different components between 

two binary vectors, so the larger the HD the more different the two vectors.33 The middle panel 

of Figure 3d shows this HD calculation process for each tree. In the case of a tree with an "X" 

state, the calculation discards it, and the HD is calculated with a code shorter than the original 

length. For example, if a tree with four hyperplanes has an MBC of (1, X, 0, 1), the second bits 

of BC and MBC vectors were excluded from the HD calculation. After the calculations, T HD 

vectors are acquired, each with a length of data point number. 
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Outliers are detected based on the calculated HD results in the last outlier counting 

phase. The lower panel of Figure 3d shows how each tree's outlier candidates are determined, 

using a hyperparameter R. The calculated HD vectors of each tree are converted to the outlier 

count vector (OCV), following the outlier counting rule, which assigns "1" or "0" to the 

components of OCV whether the HD of each data point is within 0 – R or R – 100, respectively, 

in ascending order. This assignment implies that the data points with high HD values, i.e., less 

similar to the MBC vector, tend to have the OCV component of "0". After performing this 

process for all trees, achieving T OCVs, each component in the OCVs is component-wise added 

to calculate the final outlier count. Finally, several data points with the highest final outlier 

count are designated as outliers. This ensemble approach yields robust OD results by utilizing 

the summed outlier counts across all trees. For more explanations, Figure S13 of the Supporting 

Information shows the results of applying these phases to the example 9-point dataset.

2. Modified K-means method

First, a predefined number of centroids (K) are created in the given Euclidean data space. 

Then, hyperplanes compress the spatial information of the centroids, producing a BC vector of 

the added centroids called the CBC vector, where each component is generated following 

equation (2). The tree concept is not used in this process, so one CBC vector is produced per 

centroid, and a single BC vector is generated for each data point. In this case, in contrast to the 

MOD case, hyperplanes with spatial minority are invalid in CBC (marked as Y, do not care bit) 

and also excluded from the subsequent process. Therefore, all generated hyperplanes are used 

for OD or DC without waste. Afterward, CBCs are utilized to calculate the pairwise HD with 

the remaining normal data points. Then, K HD vectors are created, and the data points with the 

smallest HD values in the component-wise comparison between the K HD vectors are assigned 

to that specific centroid, grouping the data points.3,4,34 For the given hyperplanes in the upper 

panel of Figure 3e, hyperplanes 1 and 3 coincide with the minority cases and points A and I are 

classified as outliers. In the middle panel, points B-C and E-H are classified as closer to centroid 

1 (green dot) and 2 (blue dot), respectively. 

Once such a grouping is over, each centroid's coordinates are updated to the average 

position of its assigned data points. This process repeats iteratively until the centroid's 

coordinates stabilize. The lower panel of Figure 3e shows the positions of the two saturated 

centroids after several iterations. Based on these positions, the seven normal data points are 

divided into two clusters.
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Supporting Note 2. VMM operation and OD/PC method validation with mf-CBA

 

To validate the proposed OD and PC method with mf-CBA, the 9-point dataset in the 

main text was taken as an example. Here, the dataset is two-dimensional, so the hyperplane 

consists of three variables, two for  and one for , respectively. Four mf-CBAs with 3 rows 𝑤 𝑏

and 8 columns are utilized because one hyperplane requires two columns of S-array, and the 

given structure consists of four hyperplanes in four trees. The randomly distributed hyperplanes 

demonstrate the feasible operation of the suggested method using the THR memristor's 

stochastic switching. Afterward, the coordinates of each data point (x, y coordinates, and b 

value) are applied to three rows (word lines) in the form of voltages, ranging from -0.4 V to + 

0.4 V. Figure S20a depicts the generated four trees with four hyperplanes in each tree. Due to 

the stochastic switching of S-array, hyperplanes that divide the dataset are reconstructed from 

experimentally mapped conductances of mf-CBA. Figure S20b shows the calculated output 

current values of each point in the corresponding hyperplane tree structure. Here, the sign of 

the output current can identify the relative positional relationships of 9 points regarding a single 

hyperplane. Finally, these current output data are converted to BC as shown in the binary 

numbers (0 and 1) of Figure S20b, which are used in B-array for calculating the HD. 

For the B-array operation to calculate HD, each tree's MBC and CBC vectors have H 

components, so their voltage inputs can be more conveniently made when input through B-

array's column lines (bit lines), where the BC values of each data point are already mapped. For 

H-bit HD calculation, 2H bit lines are required for this method. Then, the HD for each data 

point is read through the current output at the corresponding row lines (word lines). Figure S21a 

and b shows the voltage application for MBC and CBC to the column lines, which produce the 

HD currents for OD and DC, respectively, in the respective row lines. Based on the calculated 

HD currents, the following processes in both tasks are conducted in software as in the block 

diagram. The outlier count rule converts the calculated HDs into OCVs in OD. Then, outliers 

are determined based on the final outlier count, the componentwise sum of OCVs. In DC, the 

calculated HDs are used as indicators to allocate data points to the nearest centroid for every 

iteration. Each centroid is moved to the average position of the assigned data points, which is 

repeated until all centroids' positions are stabilized. The moved centroid's CBC can be 

calculated with S-array as in Figure S14b to recalculate HD between the moved centroid's CBC 

and mapped BCs. After completing these processes, two outliers are detected in the 9-point 

dataset, and the remaining data points are divided into two clusters.
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Figure S21c shows the current values (read at 0.1 V) when the BCs of the 

aforementioned 9-point dataset in the main text are mapped onto four B-arrays (trees), where 

the IHRS and ILRS are marked in blue and red backgrounds, respectively. For a data point in a 

single tree, 4-bit binary code can be mapped in 8 cells in a single row, so four mf-CBA with 9 

rows (corresponds to the number of data points) and 8 columns (corresponds to the binary code 

mapping method, as in Figure 4f of main text) In other words, each tree consists of four double 

columns, and each double-column corresponds to one hyperplane. These cells represent the 

double-column binary mapping in Figure 4f of the main text, which is used to calculate HDs 

with MBC and CBC when input to the column lines in voltage form. Each mapped B-array 

contains 4-bit BCs of 9 points, resulting in the calculated HDs spanning from 0 to 4, as shown 

in Figure 4i of the main text.
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Supporting Note 3. Device compact modeling of multi-functional THR memristor

In the context of the multi-functionality of the THR memristor and its filamentary-based 

resistive switching, a diode-like model was employed for the observed electrical response.9 This 

approach is supported by the quantum theory, which predicts that the current that flows through 

a filamentary-type structure can be approximated by a potential barrier with height EB as given 

by the expression9:

                          (S1)𝐼 = 𝑒𝐴 {𝑒𝑥𝑝[ ‒ 𝛾(𝐸𝑏 ‒ 𝜇𝐿)] ‒ 𝑒𝑥𝑝[ ‒ 𝛾(𝐸𝑏 ‒ 𝜇𝑅)]}

, where  and  represent the electrochemical potentials at the left and right reservoirs of the 𝜇𝐿 𝜇𝑅

structure, respectively,  and  are constants related to the particular characteristics of the 𝐴 𝛾

potential barrier, and e denotes the elementary charge of an electron. Under the application of 

a positive bias voltage V > 0,  so that Eq. (S1) becomes:𝜇𝐿 ‒ 𝜇𝑅 = 𝑒𝑉

                            (S2)𝐼(𝑉) =  𝐼0[𝑒𝑥𝑝(𝛽𝑉) ‒ 1]

which is formally analogous to the ideal diode equation,  represents the diode amplitude 𝐼0

(which may exhibit voltage dependence through ), and  is the logarithmic 𝐸𝑏 𝛽 ≈ 𝑑𝑙𝑛(𝐼)/𝑑𝑉

conductance of the diode. For negative bias voltage V < 0, a similar equation, with the 

appropriate signs, holds. For a comprehensive model, series ( ) and parallel resistances ( , 𝑅𝑆 𝑅𝑃1

) are incorporated. Physically,  may represent a residual local potential barrier. In contrast, 𝑅𝑃2 𝑅𝑆

 and  may represent localized and area-distributed parallel leakage current pathways. The 𝑅𝑃1 𝑅𝑃2

overall current-voltage relationship can thus be approximated by the expression9:

𝐼(𝑉) = 𝑠𝑔𝑛(𝑉){(𝛽𝑅𝑆) ‒ 1 𝑊[𝛽𝐼0𝑅𝑆𝑑1exp (𝛽𝑑1𝑒𝑥𝑝⁡(𝛽𝑑1(|𝑉| + 𝐼0𝑅𝑆))] +  𝑑1(|𝑉|𝐺𝑃1 ‒ 𝐼0) ‒ |𝑉|𝐺𝑃2}
                          (S3)

where , sgn is the sign function, and  is the Lambert 𝐺𝑃1 = 1/𝑅𝑃1, 𝐺𝑃2 = 1/𝑅𝑃2,𝑑1 = (1 + 𝐺𝑃1𝑅𝑆) ‒ 1
𝑊

function. For the Lambert function, we considered the following approximation, which is based 

on a Hermite-Padé expansion10:

              (S4)
𝑊(𝑥) = ln (1 + 𝑥)  (1 ‒

𝑙𝑛⁡(1 + 𝑙𝑛⁡(1 + 𝑥))
2 + 𝑙𝑛⁡(1 + 𝑥) )

for real x > 0 with a relative error less than 10−2.

Within the context of this work, the term  in Eq. (S2) is modeled by employing 𝐼0

sigmoidal-type threshold functions. This selection is motivated by the ability of these functions 
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to generate smooth transitions between the two resistance states during the application of a 

voltage signal:

                             (S5)𝐼0 = 𝐼0𝑀𝑖𝑛 + (𝐼0𝑀𝑎𝑥 ‒  𝐼0𝑀𝑖𝑛) 𝜆(𝑉)

with                           (S6)

𝜆𝑜𝑛/𝑜𝑓𝑓(𝑉) = 𝜆𝑀𝑎𝑥 𝑡𝑎𝑛𝑔ℎ[ ‒ 𝜂(𝑉 ‒
𝑉

𝑜𝑛
𝑜𝑓𝑓
𝑡ℎ

𝛽𝑟 )]
r regulates the threshold at which switching occurs between the two resistance states, and it is 𝛽

directly linked to the current compliance to mimic the behavior of Figure S22.  is the 𝑉𝑜𝑛/𝑜𝑓𝑓
𝑡ℎ

threshold voltage to switch from the HRS to the LRS, and back to the HRS. The  function 𝜆

plays the role of the state equation of the memristor. 

Eqs. (S1)-(S6) show that the proposed model possesses essential characteristics for the 

compact modeling of memristors as it is analytic, continuous, and differentiable. The tractable 

mathematical functions accurately reproduce diverse electrical responses, including linear/non-

linear and pinched/non-pinched I-V responses.  determines the transition rates for both 𝜂

switching processes. Supporting Table S2 shows the fitting parameters representing THR 

devices' switching characteristics, including the switching variations. Figure S22 shows the 

fitting results for the I-V curves in the binary and stochastic modes. 
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Supporting Table S2. Fitting Parameters for the binary and stochastic modes of the I-V 

responses of the THR-based memristor as shown in Figure S22. 

Parameter Binary mode Stochastic mode

 30 35

α 3.5 3

𝐼𝑂,𝑚𝑖𝑛 150 ± 20 nA 3±2 µA

𝐼𝑂,𝑚𝑎𝑥 3±0.5 mA 800±300 µA

𝑅𝑠 600 Ω 1 kΩ

Rp 10 kΩ 10 kΩ
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Supporting Note 4. Energy consumption and latency calculation method

1. CPU-based digital computing system

The energy consumption for a CPU-based digital computing system was estimated as 

follows: thermal design power of CPU × CPU utilization during data mining × computational 

time.12,13 Through this method, energy consumption was calculated when performing the 

proposed method and a combination of the conventional algorithms (isolation forest + K-

means).

The energy consumption for the proposed method was estimated as 45 W (thermal 

design power of CPU, Ryzen 5 4600H) × 2.5 % (CPU utilization during data mining) × 63.8 

ms (computational time for data mining) = 71.8 mJ. And, the energy consumption for a 

combination of the conventional algorithms was estimated as 45 W (thermal design power of 

CPU, Ryzen 5 4600H) × 2.4 % (CPU utilization during data mining) × 43.2 ms (computational 

time for data mining) = 47.4 mJ.

2. Memristive computing system

The energy consumption of the S-array was the sum of switching energy (Eswitching) for 

the mapping and static energy (Estatic) for the VMM operations. Thus, the total energy was 

estimated using the following equations: 

                                         (S7)𝐸𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 = ∫𝑉(𝑡).𝐼(𝑡).𝑑𝑡 

                               (S8)𝐸𝑠𝑡𝑎𝑡𝑖𝑐 =  𝐼𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐. 𝑡𝑟𝑒𝑎𝑑.(𝑉𝑟𝑒𝑎𝑑,1. 𝑁𝑐𝑒𝑙𝑙,1.𝑁𝑑𝑎𝑡𝑎𝑠𝑒𝑡 + 𝑉𝑖𝑛,1.𝑁𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑) 

, where Eswitching is the energy for the set and reset process,   is the voltage till the switching 𝑉(𝑡)

process occurs, and 𝐼(𝑡) is the current that flows through the device during the switching event, 

as shown in Figure S24. The read voltage (Vread,1) was 0.2 V on average, and its output current 

(Istochastic) was 2 μA on average. The width of the read pulse, tread, was 100 ns. The sum of S-

array cells (Ncell,1) depends on the S-array configuration.

Similarly, energy consumption calculations for the B-array were determined with 

equation S7 for the Eswitching during the mapping step, and  the static energy was calculated for 

each iteration in the VMM operations as: 

      (S9)𝐸𝑠𝑡𝑎𝑡𝑖𝑐 =  𝐼𝑏𝑖𝑛𝑎𝑟𝑦. 𝑡𝑟𝑒𝑎𝑑.𝑁𝑑𝑎𝑡𝑎𝑠𝑒𝑡.(𝑉𝑟𝑒𝑎𝑑,2. 𝑁𝑐𝑒𝑙𝑙,2.(1 ‒ 𝑅𝑋) + 𝑉𝑟𝑒𝑎𝑑,2.𝑁𝑐𝑒𝑙𝑙,2.𝑅𝑋.𝑁𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑) 

The read voltage ( ) was 0.1 V, and its output current ( ) was 0.05 mA, 𝑉𝑟𝑒𝑎𝑑,2 𝐼𝑏𝑖𝑛𝑎𝑟𝑦

corresponding to the HRS and LRS average. The width of the read pulse, tread, was 100 ns. The 
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sum of B-array cells ( ) depends on the B-array configuration. The ratio of X ( ) is 𝑁𝑐𝑒𝑙𝑙,2 𝑅𝑋

determined by the minority rate.

The energy consumption of the peripheral circuit on the mf-CBA was estimated as 

 based on 130-nm Si CMOS technology.14–17 The DAC, ADC, and comparator 𝑃𝑝𝑒𝑟𝑖.𝑡.𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡

power were about 7.2 mW, 2.3 mW, and 0.2 mW. In addition, peripheral circuits, such as DAC, 

ADC, and voltage drivers, were estimated based on an 8-bit I/O system. Finally, this work's 

step-by-step results of energy calculations regarding latency and energy consumption are 

described in Supporting Table S3.
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Supporting Table S3. Summarized step-by-step energy consumption and latency

This work

Energy (mJ) Latency (ms)

Hyperplane Tree Generation
(S-array Mapping) 3.3 × 10-3 2 × 10-4

Spatial Data Compression
(S-array VMM) 0.9 × 10-3 1.9 × 10-2 

Binary Code Representation
(B-array Mapping) 24.6 × 10-3 1.6 × 10-2

Hamming Distance Calculation
(B-array VMM) 1.3 × 10-3 3.8 × 10-3

Peripheral Circuits 135.4 × 10-3 2.1 × 10-4

Total 165.5 × 10-3 3.92 × 10-2
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