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High resistance of superconducting TiN thin films against environmental attacks
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I. EXPERIMENTAL
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FIG. S1. The photographs and schematic crystal structures of (a) single-crystalline TiN (111) films and (b) polycrystalline TiN films. Both of

them were immersed in HCl for 4 days. The polycrystalline TiN film has been destroyed, whereas the single-crystalline TiN film can survive.
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FIG. S2. (a) The schematic of the TiN crystal structure. The photographs of (b) (111)-oriented single-crystalline TiN films on Al2O3

(0001) substrates and (c) (001)-oriented single-crystalline TiN films on MgO (001) substrates immersed in the HCl solution after 3 days. The

(001)-oriented TiN films have been destroyed, whereas the (111)-oriented TiN films retained the bright golden color.
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FIG. S3. Temperature-dependent I-V curves of (a) pristine TiN films, (b) TiN films immersed in HCl for 6 days, and (c) TiN films immersed

in KOH for 9 days. The critical current densities are Jc(5.4 K) ≈ 21 kA/cm2 for pristine TiN films, Jc(5.4 K) ≈ 21 kA/cm2 for TiN films

immersed in HCl for 6 days, and Jc(5.3 K) ≈ 12 kA/cm2 for TiN films immersed in KOH for 9 days (the thickness is around 50 nm).
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FIG. S4. Temperature-dependent sheet resistances of TiN films.
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FIG. S5. SEM images of (a) pristine TiN films, (b-e) TiN films immersed in HCl for 2, 3, 4, and 6 days, and (f-i) TiN films immersed in KOH

for 3, 6, 8, and 9 days.
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FIG. S6. HAADF-STEM image of the TiN films on Al2O3 substrate immersed in HCl for (a) 6 days and (b) 7 days, respectively. The brighter

region of around 30 nm was observed in both.
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FIG. S7. (a) HAADF-STEM image of TiN films on Al2O3 substrates immersed in HCl for 6 days, combined with the EDX mapping of Cl,

Ti, N, Al, and O. (b) Enlargement of the brighter area as depicted in (a). (c) Atomic-resolution image of the TiN film at the interface of the

film and the substrate as depicted in (a).
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II. ELECTROCHEMICAL FORMULA

The adsorption process of a Cl− ion is expressed as

TiN + Cl− → Cl@TiN + e−, (S1)

and according to the electrochemical theory1, the associated free energy of reaction (∆G1) at the standard condition (298.15 K,

1bar) is expressed as

∆G1 = ∆Gad − eU, (S2)

where ∆Gad is the chemical part at the standard condition (298.15 K, 1 bar); U is the electrode potential with respect to the

standard hydrogen electrode (SHE)1. In the DFT calculations, ∆Gad is defined as

∆Gad = E(Cl@slab)− E(slab)− 1

2
[E(Cl2)− TS(Cl2)]− µ(Cl−), (S3)

where E(Cl@slab), E(slab), and E(Cl2) are the electronic energies of Cl-adsorbed TiN(111) surface, a pristine TiN(111) surface,

and a free Cl2 molecule, respectively; TS(Cl2) is the thermal correction to the energy of a standard gaseous Cl2, i.e., the free-

energy change of Cl2 from 0 to 298.15 K2; µ(Cl−) is the standard chemical potential aqueous Cl− ion3.

To indicate the stability of a Cl-substituted TiN(111) surface created after the ingression process, the Cl− ion in the solution

is considered as the reference as that for the adsorbed surface (see Equation S1 above). There are two possible reaction paths

considered here, and the corresponding reaction equations and free energies of reaction are described below.

Path (1): The substituted N anion escapes as a gaseous state, then we have

TinNn + Cl− → TinNn−1Cl +
1

2
N2 + e− (S4)

and

∆G2 = ∆fG2 − eU, (S5)

where the chemical part ∆fG2 is expressed as

∆fG2 = E(Cl@slab)− E(slab)− 1

2
[E(Cl2)− TS(Cl2)] +

1

2
[E(N2)− TS(N2)]− µ(Cl−). (S6)

Path (2): The substituted N anion escapes as an aqueous NO−3 ion, then we have

TiN + Cl− + 3H2O→ TinNn−1Cl + NO−3 + 6H+ + 6e− (S7)

and

∆G3 = ∆fG3 − 6kBT · ln(10) · pH− 6eU, (S8)

where the chemical part ∆fG3 is expressed as

∆fG3 = E(Cl@slab)− E(slab)− 1

2
[E(Cl2)− TS(Cl2)] +

1

2
[E(N2)− TS(N2)]− 3µ(H2O)− µ(Cl−) + µ(NO−3 ) (S9)
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where µ(H2O) is the standard chemical potential of water (-2.458 eV)3, and µ(NO−3 ) is the chemical potential of NO−3 ion at

10−6 mol/L, as calculated by µ(NO−3 )= ∆µ0 + kBT · ln([I]), with its standard counterpart ∆µ0 equal to -1.154 eV3.

The values of ∆Gads(O*) and ∆Gads(OH*) are calculated to indicate the adsorption stabilities of O* and OH* at different

solution pHs and electrode potentials. The reaction path for O* adsorption is written as:

H2O + slab→ O@slab + 2H+ + 2e−, (S10)

and the associated adsorption free energy is expressed as:

∆Gads(O
∗) = ∆Ee(O

∗)− T∆S(H2) + T∆S(H2O)− 2kBT · ln(10) · pH− 2eU, (S11)

where last two terms correspond to the two protons and two electrons involved in the reaction. ∆Ee(O*) is the chemical part for

the energetic difference, i.e.,

∆Ee(O
∗) = E(O@slab)− E(slab)− E(H2O) + E(H2), (S12)

where the equation of H++ e−= 1
2 H2 at the standard condition (298.15 K, 1 atm, pH = 0, U = 0 V) has been used.

The reaction path for OH∗ adsorption is written as

H2O + slab→ OH@slab + H+ + e−, (S13)

and the associated adsorption free energy is

∆Gads(OH∗) = ∆Ee(OH∗)− 1

2
T∆S(H2) + T∆S(H2O)− kBT · ln(10) · pH− eU, (S14)

where the chemical part is expressed as

∆Ee(OH∗) = E(OH@slab)− E(slab)− E(H2O) +
1

2
E(H2). (S15)
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