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Experimental Section

1. Ion concentration detection methods

UV-Vis spectrophotometer was used to detect the ion concentration of pre-test and
post-test electrolytes after dilution to appropriate concentration. The specific detection
methods are as follows:

Detection of NO3-N: 100uL electrolyte is extracted from the cathode compartment and
dilute to 3 mL, 100 p L 0.8 wt% sulfamic acid solution is added above diluted
electrolyte and left for 15 min. The absorption spectra of the above mixed solutions are
determined in the wavelength range of 190-300 nm using UV-Vis spectrophotometry.
The calibration curve was attained via a series of standard KNOj; solutions.

Detection of NO,-N: For preparing the color reagent, p-aminobenzenesulfonamide (20
g), N-(1-Naphthyl) ethylenediamine dihydrochloride (1 g) are dissolved in a mixture
containing phosphoric acid (50 mL) and deionized water (500 mL). 100uL electrolyte
is added above diluted electrolyte and left for 15 min. The absorption intensity of NO, -
N at 540 nm was measured by UV-Vis spectrophotometry. The calibration curve was
attained via a series of standard KNO, solutions.

Detection of NH/*-N: The concentration of NH,4" is conducted with Nessler’s reagent
as coloring agent. 100uL electrolyte after NOs;RR 1is taken out from the cathodic
compartment and diluted to 3 mL. 100 pL Nessler’s reagent and 100 pL. sodium
potassium tartrate solution (500 g L") are added to the above diluted solution. After
being left standing for 15 min, the absorbance at 420 nm is measured by UV-Vis
spectroscopy. The calibration curve is attained via a series of standard NH,4Cl solutions.
The NH; was further qualitatively detected by 'H-NMR spectroscopy. Hydrogen NMR
spectra are obtained by 64 scans using water suppression method. Typically, 400 pL
electrolyte is mixed with 300 pL DI water and 300 uL 2M HCI. Then, 500 puL above
solution is mixed with 100 pL internal standard solution (50 ppm m/m dimethyl
sulfoxide dissolved in D,0) for nuclear magnetic detection.

Detection of NH,/N: A mixture of 4 g 4-(Dimethylamino) benzaldehyde, 1 M

hydrochloric acid (20 mL) and ethanol (200 mL) was used as a color developing agent.



Dilute a certain amount of electrolyte to 4 ml with a pH value close to 7. Add 200uL
color developer to the above solution and mix well. The absorption intensity of N,Hy-

N at 457 nm was measured by UV-Vis spectroscopy.

2. Calculation of the yield and FE

The yield of NH; was calculated using :

C M
Yield (NHz) = ( "¥3xpy /(¢ M3x tx m)

The FE was calculated using :

C M
Faradaic efficiency = (8Fx N3 )/ ( N3 Q) x 100%

C
C —
Where "3 and %2 are the concentration of NH; and NOy-, V is the electrolyte

volume, t is the electrolysis time, m is the mass of catalyst, F is the Faradaic constant

(96485 C mol!), Q is the total charge passing the electrode.

3. Calculation of turnover frequency (TOF)

The value can be obtained according to the equation:

J

8nx*F
Where J is the current density during NOsRR in 0.1M KNOs+0.1M KOH solution, 8

TOF =

represents the stoichiometric number of electrons consumed in NO3;RR, # is the number
of active sites, F is the Faraday constant (~96485 C/mol). The charge Q of surface
active sites (n) can be described by Q = nF, therefore, we can evaluate the upper limit

of the active site number (n) according to the follow formula:

Q

n=-—
F

Here F and Q correspond to the Faraday constant and the whole charge of CV curve,

respectively. Thus, the TOF can be calculated by this equation:

T0F=L=8L
SQ*F ¢
F

And the Q can be calculated based on the equation:
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Where v is the scan rate (50 mV/s in this work), and S is the integrated areas of CV
curves. Finally, the TOF can be obtained by this equation:

TOF :]_v
S

4. Theoretical simulation

All calculations in this work were performed using the Vienna ab initio simulation
package (VASP) based on the density functional theory (DFT). The projected
augmented wave (PAW) method with PBE functional was employed for the generation
of pseudopotential. The kinetic energy cutoff for the plane-wave expansion was set to
400 eV. All the structural models were fully relaxed to the ground state with the
convergence of energy and forces setting to 105 eV and 0.01 eV A-!, respectively. Bi-
CoS, (200) surface was chosen for DFT calculations. One surface Co was removed to
model the Bi-CoS, surface. Here, the chemical reaction considered can be summarized
with the reaction equations below.

*+NO3; —>* NO;3 + ¢
*NO;3 + 2H"—*NO, +H,0
*NO, +H*—*NO +OH-
*NO +H" + e—*N
*N +H* + e—*NH
*NH +H" + e—*NH,
*NH, +H" + e—*NHj3;
Where * represents the active site. Then, the reaction free energy change can be
obtained with the equation below:
AG = AE + AEZPE — TAS
Where AE is the total energy difference before and after intermediate adsorbed,
AEZPE and AS are, respectively, the differences of ZPE zero point energy and entropy.
The zero point energy and entropy of free molecules and adsorbents were obtained from

the vibrational frequency calculations. To describe the charged NO; species as



reference, the neutral HNO; gas phase was chosen as reference and then the energy of
nitrate ion was obtained from the thermodynamic cycle to avoid the difficulty of using

periodic DFT reference and then the energy of calculations for charged systems.

5. Assembly of the Zn-NOj™ battery and electrochemical test

For testing in Zn-NOj3- battery, Bi-CoS, and Zn sheet were placed on both sides of
an anion exchange membrane as the cathode and anode respectively, where 1 M KOH
+0.1 M KNOj as the catholyte and 1 M KOH as the anolyte. The discharging
polarization curves with a scan rate of 5 mV/ s and galvanostatic tests were conducted
using a CHI 760E workstation and Land 2001A battery test system at room
temperature, respectively. After electrochemical test, the electrolyte was diluted for the
next detection. The power density (P) of zinc-nitrate battery was determined by P =/

xV, where I and V are the discharge current density and voltage, respectively.
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Fig. S1. LSV curves of the Bi-CoS;-x% (x=0, 2, 6 10) with and without NO;".
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Fig. S2. Magnified view of the XRD patterns for CoS, and Bi-CoS,.
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Fig. S3. XRD pattern of Bi-CoS,-x% (x=0, 2, 6 10).

Fig. S4. SEM image of (a) CoS,, (b) Bi-C0S,-2%, (c) Bi-C0S,-6% (Bi-CoS,) and (d) Bi-CoS,-

10%.
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Fig. S5. HRTEM image of (a) CoS,, (b) Bi-C0S,-2%, (c) Bi-CoS,-6% (Bi-CoS;) and (d)Bi-CoS,-
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Fig. S6. XPS survey spectra of CoS, and Bi-CoS,.
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Fig. S9. Activation energy (E a) of CoS; and Bi-CoS, obtained through trend extrapolation.



Polarization curves at different temperatures for the catalysts were collected to assess the apparent

a

1 23R

Pﬂ

electrochemical Eq for NO;RR using the Arrhenius relationship, , where i is the

exchange current density, T is the temperature, and R is the universal gas constant. The derived

Arrhenius plots were fitted at different overpotentials and the apparent electrochemical Eq could be
figured out from the slope of curves. Polarization curves at different temperatures and Arrhenius

plots of CoS,, Bi-CoS, were shown in Supplementary Figure 9, which are used for further activation

energy (E a) calculation.
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Fig. S10. Nyquist plots of CoS; and Bi-CoS,.
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Fig. S11. Nyquist plots and bode phase plots for Bi-CoS; and CoS; in 1 M KOH.
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Fig. S12. Nyquist plots and bode phase plots for Bi-CoS; and CoS, in 1 M KOH + 0.1 M KNO;.
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A linear fit determined the specific capacitance to be 10.74 mF cm for Bi-CoS, and 5.06 mF c¢cm™

for CoS;. In the following calculations of electrochemical active surface area ©  we assumed it as

40 pF cm2. The ECSAs is then calculated by the following formula:

10.74 mF cm ™ ?

Bi - CoS,, - > 5
Ecsa =40 uF —“per cmprg, _neo 5CMpcsy
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Fig. S15. (a) UV-Vis absorption spectra of NH,* standard solution with different concentrations.

(b) Linear relationship between light absorbance at 420 nm wavelength and the concentration of

NH,* standard solution.
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(b) Linear relationship between light absorbance at 220 nm wavelength and the concentration of
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(b) Linear relationship between light absorbance at 457 nm wavelength and the concentration of



Fig. S20. Time-dependent concentration change of NO5~ and ammonia (NH4*) over Bi-CoS; at -
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Fig. S21. (a) EE of NO;RR for CoS, and Bi-CoS,. (b) NH; yield rate and NH; FE of NO;RR for

N,H, standard solution.
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Fig. S22. SEM of Bi-CoS, (a) before and (b) after the durability test.
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Fig. S26. In-situ Raman spectra of CoS,.
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Fig. S27. XPS surface valence band spectra of CoS; and Bi-CoS,.
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Table S1. Element contents of obtained electrocatalysts tested by ICP-OES.

Catalysts Bi (%) Co (%) S (%)

CoS, 0 41.87 5491
Bi-C0S,-6% (Bi-CoS,) 8.93 38.60 50.31
Bi-C0S2-2% 3.40 4424 52.01
Bi-C0S2-10% 14.16 35.14 49.97

Table S2. Detailed process of TOF calculation.

Sample Voltage (mV) J(A) v (mV/s) S (cm?) TOF (s
Bi-CoS, 50 0.006605 50 0.02413 1.3686x102
CoS, 50 0.005926 50 0.053685 0.5519x102

Table S3. Comparison of NH; synthesis performance between NO3;RR electrocatalyst

and Bi-CoS,.
Catalysts NH; FE (%) NH; Yield (ug-cm?-h) Ref.
MoS,/GF 76.6 1690 !
Fe-SnS, 85.6 7200 2
Cu,.xS/MoS, 84.5 3026 3
Fe/Cu HNG 92.51 18360 4
Fe-N/P-C 90.3 17980 3
FeS,@TiO, 85.4 14671 6
Bi,S;/MoS, 88.4 2556.8 7
FeS,/RGO 83.7 2320 8
Cu,S/CuO 88.6 6630 o
CoS, 77.22 2925.5 This work
Bi-CoS, 87.18 5907.7 This work

Table S4. Comparison of Zn-NOj;- battery performances for Bi-CoS, with other

reported catalysts.

Catalyst FE NH; Yield Power density (01627 Ref.
(%) (mg-cm2-h) (mW cm?) \%2
Pd/TiO, 81.3 0.54 0.87 0.81 10
C/C0304 95.1 0.802 6.03 1.45 "
Cu/Cu,0/PiNWs  87.64 0.695 3.89 1.22 "

0.6W-O-CoP 75.6 2.79 9.27 0.68 .




Fe/NiP 85 0.38 3.25 1.22

Bi-CoS; 95.76 16.32 16.3 1.38 This work
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