Supplementary Information

Thermally Responsive Spatially Programmable Soft Actuators with Multiple Response States Enabled by Grayscale UV Light Processing

Yizong Li, Sooyeon Noh Coodley, Si Chen, Penghao Dong, Su Li, Shanshan Yao*

Estimation of Work Capacity

As shown in Fig. S13, the strain can be represented as:^{1, 2}

$$\varepsilon = kt = \frac{2ht}{L^2 + h^2}$$
 * MERGEFORMAT (S1)

where k denotes the curvature of the SPSA, t represents the thickness of the SPSA, L is half the length of the SPSA, and h indicates the displacement at the SPSA's end. For SPSAs with BP-PDMS layers treated by photomasks of varying grayscale levels (Fig. S10), the corresponding strain values are 1.58%, 1.76%, 1.92%, 2.00%, 2.08%, and 2.15%.

The passive layer, BP-PDMS and gPDMS, act as structural constraints that influence the bending curvature of the SPSA, however, their contribution to energy density is minimal.² Therefore, only the active layer, LCE, is considered in the energy density calculation. The energy density is calculated as:

$$W = \frac{\sigma\varepsilon}{2} = \frac{E\varepsilon^2}{2} \qquad \qquad \land * \text{ MERGEFORMAT (S2)}$$

where σ is the actuation stress of the LCE layer, and E is Young's modulus of the LCE (2.83 MPa). Accordingly, the energy densities for SPSAs in Fig. S10 are calculated as 354.01, 437.46, 519.33, 568.32, 612.09, and 656.43 J/m³

The work capacity is then given by:

$$W_{cap} = WV = \frac{E\varepsilon^2}{2}V$$
 * MERGEFORMAT (S3)

where V is the volume of the LCE layer. The resulting work capacities for SPSAs in Fig. S10 are 7.97, 9.84, 11.69, 12.79, 13.77, and 14.77 μ J.

Fig. S1. Mechanical properties of the LCE layer. (a) The strain of the LCE layer as a function of temperature. (b) The stress-strain curve of the LCE layer at room temperature.

Fig. S2. Temperature changes of gPDMS layers with varying graphite weight ratios under nIR light heating. The gPDMS layer was positioned 10 cm below the nIR light source.

Fig. S3. Stress-strain curves of BP-PDMS layers under different UV exposure times. UV treatments were performed with a fully transparent photomask (grayscale 100%) at an intensity of 1.95 mW · cm⁻².

Fig. S4. Cyclic actuation test. The bonding between each layer of the SPSA remains robust after 25 cycles of actuation.

Fig. S5. Characterization of the actuation stress. The actuation stress of SPSA can reach up to 53 KPa.

Fig. S6. Comparisons of the curvature between SPSAs with the UV-exposed (solid line) and non-UV-exposed (dashed line) BP-PDMS. (a-c) Curvatures as a function of temperature for a gPDMS layer thickness of 50 μ m and BP-PDMS layer thicknesses ranging from 50 to 200 μ m, with LCE layer thicknesses of (a) 150 μ m, (b) 300 μ m, and (c) 450 μ m. (d) Curvatures as a function of temperature for BP-PDMS and LCE layer thicknesses of 150 μ m, and gPDMS layer thicknesses ranging from 50 to 250 μ m.

Fig. S7. Stress-strain curve of the gPDMS layer. The graphite loading ratio is 12 wt%.

Fig. S8. Transmittance of the photomask to the 365 nm UV light as a function of grayscale levels.

Fig. S9. Stress-strain curves of the BP-PDMS layer made with photomasks of different grayscale levels. The UV exposure time and intensity are maintained at 120 mins and 1.95 mW⁻ cm⁻², respectively.

Fig. S10. Snapshots of the thermal actuator when heated to 50 °C with BP-PDMS layers treated by photomasks of varying grayscale levels: (a) 100%, (b) 70%, (c) 50%, (d) 30%, (e) 15%, and (f) 0%.

Fig. S11. Influence of BP-PDMS pattern variations on the locomotion mode of caterpillarinspired soft crawling robots. (a) Soft robot with an intact-only pattern demonstrates intact actuation without directional locomotion. (b) Soft robot with a joint-to-intact length ratio of 3:1 exhibits forward locomotion. (c) Soft robot without an intact section displays backward locomotion. Combined with the pattern in Fig. 6c, we conclude that the joint-to-intact length ratio determines the locomotion mode: a 0:1 ratio results in intact deformation, 1:1 and 2:1 ratios enable forward locomotion, and 3:1 and 1:0 ratios produce backward locomotion. Scale bars: 10 mm.

Fig. S12. Effect of recovery temperatures on the shape recovery rate, measured from 3 °C to room temperature in 5 °C increments.

Fig. S13. Schematic representation of deformation parameters in the SPSA.

Materials	Programming Mechanism	Untethered Actuation	Actuation Temperature (°C)	Programmability	Curvature (cm ⁻¹)	References
BP-PDMS/gPDMS/LCE	Material properties (Young's modulus by grayscale photomask)	\checkmark	30 or 50	Multiple States	0 - 2.77	This work
LCE	Material properties (Decrosslinking of LCE by photomask)	\checkmark	70	Multiple States	_	3
LCE	Material properties (Crosslinking of LCE by photomask)	\checkmark	65	Binary States	_	4
LCE	Material properties (Crosslinking of LCE along lateral direction by photomask)	\checkmark	80	Binary States	_	5
LCE	Material properties (Alignment of LCE)	\checkmark	175	Binary States	_	6
LCE	Material properties (Crosslinking along lateral direction of LCE by photomask)	\checkmark	180	Binary States	_	7
LCE	Material properties (Gradient crosslinking along thickness direction of LCE by photomask)	\checkmark	130	Binary States	_	8
LCE	Material properties (Gradient crosslinking along thickness direction of LCE by photomask)	\checkmark	80	Binary States	_	9
Polyimide/PDMS/AgNW	Geometreis (Thickness and layout of polyimide or AgNW)	x	160	Multiple States	0-2.6	10
Polyester/paper	Geometreis (Thickness of polyester)	\checkmark	90	Multiple States	0.7 - 1.8	11
LCN/GO	Geometreis (Selective deposition of GO layer)	✓		Binary States	-0.35 or 0.28	12

Table S1. Representative spatially programmable soft thermal actuators.

Mxene/Polycarbonate	Geometreis (Selective deposition of Mxene)	\checkmark	80	Binary States	_	13
Superaligned CNT array/PDMS	Geometries (Angle between current direction and CNT alignment direction)	ø	125	Multiple States	0 - 0.77	14
LCE	Geometries (Relative position between two LCE layers)	\checkmark	92 and 127	Binary States	_	15
LDPE/AgNW/PVC	Geometreis (Angle between longitudinal direction of the LDPE film and the actuator)	ß	40	Binary States	0 or 2.5	16

a) BP-PDMS = benzophenone-poly(dimethylsiloxane), gPDMS = graphite-PDMS, LCE = liquid crystal elastomer, LDPE = low density polyethylene, AgNW = silver nanowire, PVC = polyvinyl chloride, LCN = liquid crystal network, GO = graphene oxide, CNT = carbon nanotube

References

- 1. T. Sugino, K. Kiyohara, I. Takeuchi, K. Mukai and K. Asaka, *Sens. Actuat. B-CHEM.*, 2009, **141**, 179-186.
- 2. C. Lu, Y. Yang, J. Wang, R. Fu, X. Zhao, L. Zhao, Y. Ming, Y. Hu, H. Lin and X. Tao, *Nat. Commun.*, 2018, **9**, 752.
- 3. Z. C. Jiang, Y. Y. Xiao, X. Tong and Y. Zhao, *Angew. Chem. Int. Ed.*, 2019, **131**, 5386.
- 4. R. Yang and Y. Zhao, Angew. Chem. Int. Ed., 2017, 129, 14390.
- 5. B. Jin, H. Song, R. Jiang, J. Song, Q. Zhao and T. Xie, *Sci. Adv.*, 2018, 4, eaao3865.
- 6. T. H. Ware, M. E. McConney, J. J. Wie, V. P. Tondiglia and T. J. White, *Science*, 2015, **347**, 982.
- 7. T. S. Hebner, R. G. Bowman, D. Duffy, C. Mostajeran, I. Griniasty, I. Cohen, M. Warner, C. N. Bowman and T. J. White, *ACS Appl. Mater. Interfaces*, 2023, **15**, 11092-11098.
- 8. J. Hu, Z.-Y. Kuang, L. Tao, Y.-F. Huang, Q. Wang, H.-L. Xie, J.-R. Yin and E.-Q. Chen, *ACS Appl. Mater. Interfaces*, 2019, **11**, 48393-48401.
- 9. D. Sezen Polat, V. E. Buurman, D. J. Mulder and D. Liu, *Chem. Eur. J.*, 2024, **30**, e202400515.
- 10. S. Yao, J. Cui, Z. Cui and Y. Zhu, *Nanoscale*, 2017, 9, 3797.
- 11. X. Li, Y. Du, C. Xiao, X. Ding, X. Pan, K. Zheng, X. Liu, L. Chen, Y. Gong and M. Xue, *Adv. Funct. Mater.*, 2023, **34**, 2310380.
- 12. L. Zhang, J. Pan, Y. Liu, Y. Xu and A. Zhang, *ACS Appl. Mater. Interfaces*, 2020, **12**, 6727-6735.
- 13. G. Cai, J.-H. Ciou, Y. Liu, Y. Jiang and P. S. Lee, *Sci. Adv.*, 2019, **5**, eaaw7956.
- 14. Q. Li, C. Liu, Y.-H. Lin, L. Liu, K. Jiang and S. Fan, ACS Nano, 2015, 9, 409-418.
- 15. A. Kotikian, C. McMahan, E. C. Davidson, J. M. Muhammad, R. D. Weeks, C. Daraio and J. A. Lewis, *Sci. Robot.*, 2019, **4**, eaax7044.
- 16. H. Kim, H. Lee, I. Ha, J. Jung, P. Won, H. Cho, J. Yeo, S. Hong, S. Han and J. Kwon, *Adv. Funct. Mater.*, 2018, **28**, 1801847.