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Supplementary Section 1: X-Ray diffraction experimental details. 

 

2a. Single-crystal X-Ray diffraction 

 

Single crystals were mounted on cryo-loops with Parabar 10312 oil. Data for structure 

determination were collected on an Xcalibur 3 four-circle diffractometer (Oxford Diffraction) 

equipped with a 2D Sapphire3 CCD detector with an enhanced source using Mo Kradiation ( = 

0.71073 Å). Nitrogen flow 700 series cryostat from Oxford Cryosystems was used for the variable-

temperature measurements. Complete datasets were taken respectively at 90 K and 300 K (Table S1). 

The CrysAlisPRO95 software package from Rigaku Oxford Diffraction was used for all data 

collections and data processing (indexing, integration, and reduction). All structures were solved by 

dual direct methods with SHELXT6 and refined by full-matrix least-squares on F2 using SHELXL7 

in OLEX2.8 All non-hydrogen atoms were refined anisotropically and H-atoms were constrained by 

geometry. DFIX restraints have been applied for some aromatic C-C bonds of the PM-PEA ligand in 

our structural model.  

Detailed changes in unit cell volume, cell parameters, and Bragg peaks intensities as a function of 

temperature were also investigated during cooling from 300 K to 80 K and warming from 80 K to 

500 K with 2−3 K steps (200 K.h-1 cooling/heating rate). The duration of the X-ray diffraction 

measurement for each temperature step was approximately 12 minutes.  

In addition, low temperature single crystal X-ray diffraction experiments were performed on this 

system to confirm the existence of the HSls phase at 30 K. An Oxford Cryosystems N-Helix open-

flow gas cryostat fitted on a SuperNova four-circle diffractometer (Agilent Technologies) with an 

EoS 2 detector and a Mo micro-source ( = 0.71073 Å) was used to rapidly cool a single crystal from 

293 to 30 K. The crystal structure of the quenched state was exactly the same as the one reported 

previously by Guionneau and co-workers. 8 

CCDC 2309697 (90 K) and CCDC 2309698 (300 K) contain the crystal data collection and 

refinement parameter details for this paper, which can be obtained free of charge via www.ccdc.cam. 

ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, 

Cambridge CB2 1EZ, U.K.; fax: (+44) 1223-336-033; or deposit@ccdc.ca.ac.uk). 

 

2b. Powder X-Ray diffraction 

 

High temperature powder X-ray diffraction (Fig. S5a) was performed on a Malvern Panalytical 

Empyrean diffractometer, equipped with a focusing mirror in the Debye-Scherrer geometry, and 

operating with the CuK1,2 radiation (1 = 1.5406 Å, 2 = 1.5444 Å). Crystals were gently crushed 

until a homogeneous powder was obtained. The polycrystalline compound was introduced into a 0.5 

mm diameter quartz capillary, and then placed in the centre of an Anton Paar HTK 1200N oven-

camera mounted on the goniometer. X-ray powder patterns were collected every 10 K from ambient 

to 520 K, within a relevant angular range that allowed subsequent Bragg peaks decomposition. Unit 

cell parameters were determined from Pawley refinement at each temperature up to the phase 

degradation, using the FullProf suite software.9 
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Table S1. crystallographic data collection and refinement details,   

 

 

Reference LShs HSls 
Empirical formula C42H28FeN6S2 

Formula weight 736.67 
T (K) 91(5) 300.00(12) 
Crystal system orthorhombic monoclinic 
Space group Pccn P21/c 
a (Å) 14.2537(4) 15.6569(10) 
b (Å) 14.2713(5) 14.5792(10) 
c (Å) 17.4543(5) 16.8595(9) 
α (°) 90 90 
β (°) 90 93.153(5) 
γ (°) 90 90 
V (Å3) 3550.53(19) 3842.6(4) 
Z 4 4 
Dc (mg/cm3) 1.378 1.273 
μ (Mo-Kα) (mm-1) 0.583 0.538 
F(000) 1520.0 
Crystal size (mm3) 0.19 x 0.13 x 0.07 
No. of total reflections 28015 45533 
No. of reflections [I>2σ(I)] 3489 7553 
R [I>2σ (I)] 0.0425 0.0664 
wR  [I>2σ (I)] 0.0793 0.0805 
S 1.047 1.028 

  



Supplementary Section 2: Intra-molecular structural reorganization. 

 

The structural analysis at the molecular level provides key information on spin crossover and 

symmetry-breaking. For the first case, the metal-ligand bond lengths are one of the best probes to 

monitor spin transition. The ≃ 0.2 Å variation of the Fe-N bonds is characteristic of a complete 

HS↔LS conversion in Fe(II)-based SCO materials, as it is a direct response to an important electronic 

rearrangement, which involves the population – depopulation of the eg-like molecular orbitals, which 

have an antibonding character. Table S2 shows the different Fe-N bond length values of the [FeII(PM-

PEA)2(NCS)2] coordination compound in the HSls and LShs phases. In this data it can be seen how 

the magnitude of the change slightly differs between each coordination bond, with a much more 

pronounced variation on those where the PM-PEA ligands are involved. The average Fe-N distances 

in the HSls and LShs phase are 2.163(2) Å and 1.958(2) Å, respectively, which means a bond variation 

of ≃ 0.2055 Å upon the phase transition. This clearly shows a complete interconversion between both 

spin states, in agreement with magnetic data. Additionally, it is common practice to compare the 

deviation of the ideal octahedral FeN6 coordination geometry of the complex in HS and LS state, by 

evaluation of the angular (𝚺 = ∑ |90 − ϕ𝑖|
12
𝑖=1 ) and trigonal distortion (𝚯 = ∑ |60 − θ𝑖|

24
𝑖=1 ), because 

they are important parameters to rationalize long-live meta-stable states and huge thermal hysteresis.1 

A much more distorted octahedral environment is achieved when the HSls phase is generated in 

[FeII(PM-PEA)2(NCS)2], displaying a significant increase (+95%) of the octahedral trigonal 

distortion, as shown in Fig. S1 and Table S2.  

On the other hand, symmetry-breaking signatures can be identified at the molecular level in 

[FeII(PM-PEA)2(NCS)2], in relation with the loss of the 2-fold axis that goes through the metal centres 

along the c axis in the LShs phase. Table S2 and Fig. S1 show that in the LShs phase, due to the 

presence of the 2-fold axis, there are three pairs of equivalent Fe-N coordination bonds (Fe-N1 = Fe-

N1’, Fe-N2 = Fe-N2’, Fe-N3 = Fe-N3’). When this 2-fold axis is lost in the HSls phase, the six Fe-N 

coordination bonds become crystallographically independent. In addition, the relative angles of the 

two NCS groups (taken Fe-N1 and Fe-N1’ coordination bonds as a reference) with respect to the (a,c) 

plane in the LShs phase are also representative of the impact that the symmetry-breaking has over the 

coordination sphere of the complexes (see Fig. S1). For the LShs phase, both NCS groups display 

identical values for the defined angle (42.99º), while becoming non-equivalent upon the phase 

transition towards HSls phase. Fig. S2 shows that at the supramolecular scale the loss of the C2 axis 

results in a bending and sliding of the molecular layers lying on the (a,c) planes. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table S2 Distortion of the FeN6 octahedron. Metal-ligand bond lengths (Å) and angles (º) measured 

by XRD and obtained from DFT (including also the HShs state) for [FeII(PM-PEA)2(NCS)2].  

 
LShs  

XRD, 90K 
HSls  

XRD, 300K 
LShs  
(DFT) 

HShs 

(DFT) 
HSls 

(DFT) 

Fe-N1 1.952(2) Å 2.056(4) Å 1.9304 Å 2.0251 Å 2.0106 Å 

Fe-N1’ 1.952(2) Å 2.052(4) Å 1.9304 Å 2.0251 Å 2.0467 Å 

Fe-N2 1.958(2) Å 2.181(4) Å 1.9871 Å 2.2214 Å 2.2470 Å 

Fe-N2’ 1.958(2) Å 2.168(4) Å 1.9871 Å 2.2214 Å 2.2141 Å 

Fe-N3 1.964(2) Å 2.268(3) Å 1.9923 Å 2.3479 Å 2.3425 Å 

Fe-N3’ 1.964(2) Å 2.252(3) Å 1.9923 Å 2.3479 Å 2.3464 Å  

Fe-Nav 1.958(2) Å 2.163(2) Å 1.9699 Å 2.1981 Å 2.2012 Å 

Σ 58.0(5)  83.3(4) 44.49 90.86 94.83 

Θ 89.6(7)  175.5(11) 102.31 205.10 215.22 

Fe-N1-S1 (°) 162.3(2) 167.0(2) 159.0 155.4 157.7 

Fe-N1’-S1’(°) 162.3(2) 163.1(2) 159.0 155.4 152.6 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S1 Molecular deformation upon SCO and SB. a, Octahedral coordination sphere around the 

Fe (green) of [FeII(PM-PEA)2(NCS)2] in the LShs and HSls phases, where the 2-fold axis is 

highlighted. b, Angular deviation of thiocyanate functional groups with respect to the (a,c) plane 

which contains the Fe(II) metallic centres. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S2 Molecular deformation within the lattice. With the loss of the C2 axis in the HSls phase 

the molecules shift and bend.  

a HSls LShs 

b HSls LShs 

HSls LShs 



Supplementary Section 3: Thermal dependence of lattice parameters and calculations of the 

volume strain and ferroelastic distortion. 

 

Fig. S3 shows the thermal dependence of the lattice parameters between the LShs and HSls phases. 

As reviewed by Carpenter,2 ferroelastic phase transitions are characterized by the thermal dependence 

of: 

- the volume strain 𝑣𝑠(𝑇) =
𝑉(𝑇)

𝑉ℎ𝑠(𝑇)
− 1, where 𝑉(𝑇) is the measured volume and 𝑉ℎ𝑠(𝑇) the volume 

of the high symmetry phase extrapolated at T in the low symmetry phase (Fig. S3).  

 

- the ferroelastic strain, which corresponds to the 𝜀13(𝑇) component of the strain tensor2-4 for the 

orthorhombic ⇌ monoclinic ferroelastic distortion; with 𝜀13(𝑇) =
1

2
(
𝑐(𝑇) cos(𝛽(𝑇))

𝑐ℎ𝑠(𝑇)
), where 𝑐(𝑇) and 

𝛽(𝑇) are the measured lattice parameter and 𝑐ℎ𝑠(𝑇) the value in the high symmetry phase 

extrapolated at T in the low symmetry phase (Fig. S3).   

 

The components of the strain tensor are shown in Fig. S4. The partial spin conversion in the LShs 

phase on approaching the phase transition is responsible for the pre-transitional volume strain 

observed in Fig. S3.   

 

 

 

 

 

 
 

Fig. S3 Thermal dependence of the lattice parameters. The lattice parameters are given in the same 

unit cell in the HSls and LShs phases. The volume strain is calculated from the LShs phase. The 

discontinuous changes occur at 218 K on cooling and 238 K on warming.  

  



 

 
 

Fig. S4 Thermal dependence of the deformation tensor components. These tensor deformation 

elements were calculated from Fig. S3, considering the LShs phase as a reference and interpolating 

the thermal dependence in the HSls phase. The deformation is weak along the monoclinic crystalline 

axis (𝜀2) and highly anisotropic in the (a,c) plane as 𝜀1 increases and 𝜀3 decreases in the HSls phase.  

 

 

 

The HSls phase is characterized by the deviation of the monoclinic  angle from 90°, which results 

in a splitting of the (ℎ𝑘𝑙) and (ℎ̅𝑘𝑙) Bragg peaks in powder diffraction data (Fig. S5b). The symmetry-

breaking order parameter  decreases above 300 K (Fig. S5c), toward a hypothetic HS high symmetry 

phase at ~800 K, according to a square root fitting performed on the experimental data (blue dashed 

line). The HSls phase is stable up to ≃ 500 K, where melting starts. 

 



 
 

 

Fig. S5 High temperature low symmetry phase. a, X-ray powder diffraction data I(Q) at high 

temperature, where monoclinic phase transition is characterized by a splitting of the (ℎ𝑘𝑙) and (ℎ̅𝑘𝑙) 

Bragg peaks due to the ferroelastic strain 13. b, the modulus of the reciprocal vectors |�⃗� (102̅)| 

and |�⃗� (102)| differ for ≠90°, which translates in a splitting of the (102̅) and (102) Bragg peaks. 

c, decrease of  above 300 K. The HSls phase is stable up to ≃ 500 K, above which the material starts 

to melt and the diffraction signal is lost.   

 

 

  



In a previous crystallography study,5 the X-ray diffraction data clearly show that the flash-cooled 

state corresponds to the monoclinic P21/c HSls phase (CCDC-632777), with the lattice parameters a 

= 15.681(1) Å, b = 14.192(1) Å , c = 16.634(2) Å , β = 93.18(1)°, V = 3696(1) Å3. The crystal packing 

is identical to the one of the HSls phase stable at high temperature, and the Fe(II) coordination sphere 

geometry clearly indicates that the molecules are in the HSls state. On warming, the trapped HSls 

state relax towards the LShs orthorhombic phase characterized by the lattice parameters a = 14.293(1) 

Å, b = 14.304(1) Å, c = 17.509(2) Å , β = 90°, V = 3580 (1) Å3. This thermal relaxation is also 

characterized by the thermal evolution of the volume strain 𝑣𝑠(𝑇) and the ferroelastic strain 𝜀13(𝑇) 

shown in Fig. S6, which confirms that the LShs phase corresponds to the ground state.  

 

 

 
Fig. S6 Thermal dependence of the strains from HSls state quenched at 30 K. The thermal 

relaxation from the HSls state quenched at 30 K to the LShs phase occurs around 65 K, as 

characterized by the thermal evolution of the volume strain 𝑣𝑠 and the ferroelastic strain 𝜀13 in the 

HSls (red) and LShs (blue) phases.  

 

 

 

 

 

  



Supplementary Section 4: Symmetry-breaking Bragg peaks. 

 

The symmetry-breaking from the Pccn LShs space group to the P21/c HSls space group is also 

characterized by the change of Bragg peaks extinction rules. In the Pccn space group, the intensities 

𝐼ℎ𝑘𝑙 of Bragg peaks indexed 0kl with 𝑙 = 2𝑛 + 1, h0l with 𝑙 = 2𝑛 + 1 and hk0 with ℎ + 𝑘 = 2𝑛 + 1 

are zero. In the P21/c space group with same b axis as in the Pccn space group, the intensities 𝐼ℎ𝑘𝑙 of 

Bragg peaks indexed 0kl with 𝑙 = 2𝑛 + 1 and hk0 with ℎ + 𝑘 = 2𝑛 + 1 are not restricted to zero 

anymore. The corresponding Bragg peaks with intensity  𝐼ℎ𝑘𝑙 ∝ 𝜂2 are highlighted in Fig. S7.  

 

 

For example, in the space group Pccn, the c glide plane  a relates atomic coordinates: 

(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) ⇌ (−𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 +
1

2
). 

 

The structure factor of 0kl Braggs splits into two contributions from these equivalent atoms:  

𝐹0𝑘𝑙 = ∑ 𝑓𝑗𝑗 [𝑒(2𝑖𝜋(𝑘𝑦𝑗+𝑙𝑧𝑗)) + 𝑒(2𝑖𝜋(𝑘𝑦𝑗+𝑙(𝑧𝑗+
1

2
))]=∑ 𝑓𝑗𝑗 [𝑒(2𝑖𝜋(𝑘𝑦𝑗+𝑙𝑧𝑗))] [1 + (−1)𝑙] 

 

Therefore, if there is a c glide plane  a 𝐹0𝑘𝑙 = 0 for 𝑙 = 2𝑛 + 1 and the intensity  𝐼0𝑘𝑙 = 0. 

Due to symmetry-breaking with amplitude 𝜂 and loss of this glide plane, there is a relative shift of 

initially equivalent atoms by ∆𝑧𝑗 ∝ 𝜂: (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) ⇌ (−𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 + ∆𝑧𝑗 +
1

2
) 

 

𝐹0𝑘𝑙 = ∑ 𝑓𝑗𝑗 [𝑒(2𝑖𝜋(𝑘𝑦𝑗+𝑙𝑧𝑗)) + 𝑒(2𝑖𝜋(𝑘𝑦𝑗+𝑙(𝑧𝑗+∆𝑧𝑗+
1

2
))] = ∑ 𝑓𝑗𝑗 [𝑒(2𝑖𝜋(𝑘𝑦𝑗+𝑙𝑧𝑗))] [1 + (−1)𝑙𝑒(2𝑖𝜋𝑙∆𝑧𝑗)]  

𝐹0𝑘𝑙 = ∑ 𝑓𝑗𝑗 [𝑒(2𝑖𝜋(𝑘𝑦𝑗+𝑙𝑧𝑗))] [1 + (−1)𝑙(1 + 2𝑖𝜋𝑙∆𝑧𝑗)]  ∝ 𝜂   𝑓𝑜𝑟 𝑙 = 2𝑛 + 1  

 

Therefore, the intensity of the symmetry-breaking Bragg peaks 𝐼ℎ𝑘𝑙 ∝ 𝜂2. 

 

 

The X-ray diffraction data show that the after synthesis at room temperature the ferroelastic high 

temperature phase corresponds to a single domain. 

 

 
 

  



 

 Fig. S7 Symmetry-breaking in the reciprocal space. a, diffracted intensity in the (hk0) plane showing that 

the extinction at the nodes of the reciprocal space indexed  ℎ + 𝑘 = 2𝑛 + 1 in the LShs Pccn phase is 

suppressed in the HSls P21/c phase as indicated by yellow doted circumferences. b, diffracted intensity in the 

(h0l) plane showing the distortion of the reciprocal lattice where * deviates from 90° in the LShs Pccn phase 

to 86.9° in the HSls P21/c phase. c, diffracted intensity in the (0kl) plane showing that the extinction in the 

rows 𝑙 = 2𝑛 + 1 marked by arrows in the LS Pccn phase is suppressed in the HS P21/c phase.   



Supplementary Section 5: DFT calculations. 

 

DFT geometry optimizations were carried out by using the Gaussian 16 (revision A.03) package10 

with the PBE0 hybrid functional11, 12 and tightening both self-consistent field (10−10 au) and geometry 

optimization (10−5 au) convergence thresholds. The “Stuttgart/Dresden” basis sets and effective core 

potentials were used to describe the iron atom,13 whereas all other atoms were described with the SVP 

basis sets.14  

 

We performed DFT calculations on the isolated molecule in the LShs and HShs states with optimized 

molecular structure with C2 symmetry and in the HSls state with C1 symmetry. The energy diagram 

of t2g-like and eg-like orbitals in C2 symmetry (LShs and HShs) shows two pairs of degenerate 

orbitals: d(y2)  d(2y2-x2-z2) like and d(xy)  d(yz) like, labelled as such since the 2-fold symmetry 

axis is along the y direction. These orbitals highlight that the two NCS groups and the two PM-PEA 

ligands are symmetry-equivalent with respect to the 2-fold axis. The C2 structure of the HShs state is 

unstable, as a low symmetry torsion mode QT (B symmetry) exhibits a negative frequency. The atomic 

motions of this torsion mode, shown in Fig. S8, break C2 symmetry with a displacement of the Fe 

out of the 2-fold symmetry axis. The associated torsions of the NCS groups are similar to the torsions 

observed in the HSls crystalline structure. The mode is shown in supplementary movie 1. In the C1 

HSls state, the degeneracy is lifted and orbitals are asymmetric, especially around the NCS groups 

(Fig. S8). Both the motion of the NCS groups along the unstable QT mode in HShs state and 

asymmetric spin density on the NCS groups in the HSls state (Fig. S9), explain the coupled changes 

of spin state and symmetry and the different torsions of the NCS groups observed in the crystalline 

structure of the HSls state. The structural parameters around the FeN6 coordination sphere are given 

in Table S2, where we can see a nice global agreement between DFT and XRD results, considering 

that DFT calculations are performed on an isolated molecule. The difference between DFT 

calculations and XRD measurements is very likely due to the molecular packing in the crystal. 

 

Based on the calculated vibration modes  for HSls and LShs states (Table S3), we calculate the 

vibrational entropy difference, due to frequency changes from 𝜈𝜆
𝐿𝑆ℎ𝑠  to 𝜈𝜆

𝐻𝑆𝑙𝑠. The usual low 

frequency approximation15, 16 with dominant contribution of 47 modes below 400 cm1 gives  

Δ𝑆𝑣𝑖𝑏 = 𝑅∑ ln (
𝜈𝜆
𝐿𝑆

𝜈𝜆
𝐻𝑆)𝜆 = 58.3 J.K−1.mol−1.  

Including the contribution of the 3 acoustic modes, considering a global softening scaling with the 

speed of sound ratio of the order of 1.1 between LS and HS states, gives a global vibrational entropy 

contribution Δ𝑆𝑣𝑖𝑏= 58.9 J.K−1.mol−1.  

This large vibrational entropy increase from LShs to HSls is mainly due to the change of spin state. 

Indeed, the frequencies of the modes of the HShs and HSls states, are very similar, except for the 

unstable low symmetry torsion mode QT discussed above.  

  



a 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S8. Orbital energy diagram. a, optimized and stable molecular structures for the C2 LShs, C2 

HShs and C1 HSls states. Only  spins are shown for clarity. b,  spin density for one orbital in the 

C1 HSls sate showing different densities around the NCS groups equivalent in C2 symmetry. 

  



 

 
Fig. S9. Unstable mode in the HShs state. The optimized molecular structure in HShs state with 

C2 symmetry exhibits one vibrational mode with negative frequency. It corresponds to a torsion 

low symmetry torsion mode QT (B symmetry). The relaxation along this mode brings the system to 

the stable HSls state. The motions of the Fe, N and NCS groups are highlighted for clarity. 

 

 

 

 

Table S3. Vibrational modes frequencies. For HSls and LShs states (below 400 cm1). 

 

 

Mode 

n° 

HSls  

(cm1) 

LShs  

(cm1) 

Mode 

n° 

HSls  

(cm1) 

LShs  

(cm1) 

Mode 

n° 

HSls  

(cm1) 

LShs  

(cm1) 

1 5.62 8.69 18 63.69 70.37 35 187.05 232.30 

2 10.41 10.93 19 69.14 73.50 36 189.88 243.46 

3 11.50 12.53 20 79.84 103.86 37 212.06 268.12 

4 16.10 14.57 21 82.99 109.62 38 246.74 275.83 

5 16.45 14.84 22 99.11 117.45 39 251.25 310.58 

6 17.39 20.23 23 101.18 119.15 40 280.49 313.02 

7 20.52 21.26 24 116.00 138.32 41 292.60 322.68 

8 21.76 22.01 25 127.99 144.01 42 302.39 334.86 

9 23.60 31.49 26 130.32 151.47 43 304.69 346.09 

10 26.05 34.28 27 139.65 176.69 44 313.57 355.47 

11 29.23 37.42 28 142.20 186.48 45 314.70 365.99 

12 34.69 38.29 29 142.46 192.24 46 348.65 387.09 

13 39.25 41.20 30 151.17 200.87 47 349.57 395.21 

14 45.00 43.94 31 165.90 209.90    

15 53.32 50.21 32 168.12 211.21    

16 58.43 62.41 33 178.02 216.79    

17 62.57 69.79 34 183.41 224.75    

 

  



Supplementary Section 6: Landau model of coupled symmetry-breaking and SCO. 

 

6.a Lowest order Landau potential  

 

Here we introduce a simpler version of the Landau potential to describe the coupled SC and SB,17-19 

through a Taylor development of the SB (𝜂) and SC (𝑞) order parameters. 𝑞 corresponds to an 

isosymmetric transformation, without restriction of orders in the development. Due to the loss of the 

C2 axis, the thermodynamic potential should satisfy the G(𝜂) = G(−𝜂) relationship and therefore 

only even orders of 𝜂 are allowed.3  As starting point we use the lowest order and relevant Gibbs 

potential, whose solutions can be derived analytically:  

𝐺(𝑞, 𝜂) = 𝐴𝑞 +
𝐵

2
𝑞2 +

𝑏

4
𝜂4 + 𝐷𝑞𝜂2   (5.1)  

The 𝑞, 𝑞2 terms describe the spin conversion potential, with B>0 for stability and A=a1(TSC-T) is the 

reduced temperature. For limiting the number of parameters, we consider hereafter B, b and D 

constant. The symmetry-breaking terms include 𝜂4, with 𝑏 > 0 for stability and the coupling term 

𝐷 < 0 for stabilizing the LShs and HSls phases. In order to find the stable solutions for 𝜂 in equation 

(4), we use the stability conditions: 

 
𝑑G

𝑑𝜂
= 0 = (𝜂2 + 2𝐷𝑞)𝜂  and  

𝑑2G

𝑑𝜂2
> 0, which gives two solutions:  

 

- 𝜂 = 0, restricting 2𝐷𝑞 > 0, corresponds to LShs phase (𝑞 < 0, 𝜂 = 0) 

- 𝜂 = ±√−
2𝐷𝑞

𝑏
, restricting 𝜂2 > −

2𝐷𝑞

3𝑏
 , 𝑞 > 0, for the HSls phase (𝑞 > 0, 𝜂 ≠ 0)  

 

 

By substituting both solutions for 𝜂 into equation (5.1), two expressions for the thermodynamic 

potential are obtained, corresponding to the LShs (5.2) and HSls (5.3) phases: 0 

 

- 𝐺𝐿𝑆ℎ𝑠 = 𝐺(𝑞, 𝜂 = 0) = 𝐴𝑞 +
𝐵

2
𝑞2     (5.2) 

- 𝐺𝐻𝑆𝑙𝑠 = 𝐺(𝑞, 𝜂 ≠ 0) = 𝐴𝑞 + (
𝐵

2
−

𝐷2

𝑏
) 𝑞2   (5.3) 

-  

It is then straightforward to describe the thermal evolution of the equilibrium value of 𝑞, considering 

the spin transition parameter as explicitly restricted to −1 ≤ 𝑞 ≤ 1. The stability limits with 

temperature of HS and LS states can be analytically found with:  

 

𝑑𝐺(𝑞, 𝜂 = 0)

𝑑𝑞
|
𝑞=−1

= 0 

 

𝑑𝐺(𝑞, 𝜂2 = −
2𝐷𝑞
𝑏

)

𝑑𝑞
|

𝑞=1

= 0 

 

𝑞 =
−𝑎0(𝑇𝑆𝐶 − 𝑇)

𝐵
|
𝑞=−1

 

 

𝑇2 =
2

𝑎0
(
𝐵

2
−

𝐷2

𝑏
) + 𝑇𝑆𝐶  

𝑇1 =
−𝐵

𝑎0
+ 𝑇𝑆𝐶  

 

  



The thermal evolution of the potential along 𝑞 and the thermal dependence of equilibrium 𝑞 and 𝜂 

are shown in Fig. S10. Below 𝑇1 𝑞 is restricted to −1 and in the LS phase it linearly increases between 

𝑇1and 𝑇𝑆𝐶, where 𝑞 = 0 is the stability limit.  

 

This LS phase stable below 𝑇𝑆𝐶 is high symmetry (LShs, 𝑞 > 0, 𝜂 = 0). Above 𝑇𝑆𝐶, the strong 

coupling D stabilizes the HSls phase with 𝑞 fixed to 1 and 𝜂 = √−
2𝐷

𝑏
. On cooling, this HSls phase is 

stable down to 𝑇2, where the phase transition towards the LShs phase occurs.  

The hysteresis width, 𝑇𝑆𝐶 − 𝑇2 = −
2

𝑎0
(
𝐵

2
−

𝐷2

𝑏
), is enlarged by the coupling 𝐷, which is also 

responsible for the appearance of an energy barrier in the HSls state (Fig. S10), precluding relaxation 

towards the LS state. This lowest order Gibbs potential has the advantage to provide analytical 

solutions reproducing the stepwise evolution of the symmetry-breaking order parameter 𝜂 and the 

unsymmetric hysteresis loop of the spin transition order parameter 𝑞. 

 

 

However, the Taylor development limited to 𝑞2 gives a linear evolution of 𝑞 on warming. In the main 

text, we add a 𝑞4 term in the potential in equation (1). The solutions are no more analytical and 

equilibrium 𝑞 is found numerically. Fig. 4 shows that this potential provides a gradual thermal 

conversion on warming from the LS state and reproduces very well experimental data, catching so 

the main physical parameters behind the physics of coupled symmetry-breaking and spin crossover.  
 
 
 
 
 

 
Fig. S10 Lowest order Landau Model. a, Thermal dependence the Gibbs potential along the spin 

crossover parameter 𝑞. These minima are represented by blue and red dots for LS and HS states, 

respectively, while the maxima in the HS region (height of energy barrier) is marked with green dots. 

The minima correspond to the thermal equilibrium of 𝑞 (b) and 𝜂 (c). Results obtained from Eq (5.1) 

with 𝑎1 = 0.3, 𝐵 = 8, 𝑏 = 2, 𝑇𝑆𝐶 = 235 𝐾, 𝐷 = −4. 



6.b Higher order Landau potential  

 

In the manuscript we consider the Landau potential:  

𝐺(𝑞, 𝜂) = 𝑎1(𝑇𝑆𝐶 − 𝑇)𝑞 +
𝐵

2
𝑞2 +

𝐶

4
𝑞4 +

𝑎0

2
(𝑇 − 𝑇𝑐)𝜂

2 +
b

2
𝜂4 + 𝐷𝑞𝜂2 +

E

2
𝑞2𝜂2         (5.4) 

and discussed the strong coupling limit, for which (
𝑎0

2
(𝑇 − 𝑇𝑐) ≪ 𝐷𝑞. The theoretical results are then 

matching very well the experimental data in the vicinity of the LShsHSls phase transition. However, 

in this strong coupling limit, the symmetry-breaking order parameter is found to be constant in the 

HT phase (𝜂 = √−(2𝐷𝑞 + 𝐸𝑞2)/𝑏, were q is fixed to 1. This does not fit with experimental data at 

much higher temperature. Indeed, the X-ray diffraction data in Fig. S5 shows that 𝜀13𝜂 decreases at 

much higher temperature, and is extrapolated to vanish around 800 K. This indicates the presence of 

a hypothetical and hidden high spin phase with high symmetry (Pccn) at much higher temperature.  

This can be explained by considering the influence of the 
𝑎0

2
(𝑇 − 𝑇𝑐)𝜂

2 term in the Landau model. 

In this case, a high spin high symmetry phase (HShs, q=1, =0) is found to be stable above the 

temperature 𝑇𝑆𝐵 = (𝑇𝑐 −
2𝐷

𝑎1
−

𝐸

𝑎1
).   

 

Fig. S11 shows the thermal dependence of q and  obtained from the potential in equation (5.4), 

which reproduces the stepwise changes of 𝑞(𝑇) and 𝜂(𝑇) observed on cooling in Fig. 2a and 2b and 

the decrease of 𝜂 at higher temperature, matching so the global experimental data. This HShs phase, 

which corresponds to the HS parent paraelastic phase, is however not observed experimentally as 

sample melts around 500 K. 

 

 

 

 

 

Fig. S11 Higher order potential. 
Thermal dependence of the SC 

(q) and SB (𝜂) parameters 

extracted from equation (5.4), 

with the stepwise and ascending 

LShsHSls SB (upper panel) and 

the decrease of 𝜂 at higher 

temperature, towards a 

hypothetical and hidden 

HSlsHShs phase transition 

around 800 K. Results obtained 

from Eq (5.4) with 𝑎0 = 0.6,  

𝑎1 = 0.0185, 𝐵 = 0, 𝐶 = 35, 

𝑏 = 10, 𝑇𝑆𝐶 = 235 𝐾,   

𝐷 = −6.5, 𝐸 = −12.2 

 

  



Supplementary Section 7: Differential scanning calorimetry measurements. 

 

DSC measurements were performed in the 115–295 K temperature range under argon on a Perkin 

Elmer calorimeter DSC8000 coupled with CLN2 regulator setting the scan rate of 5 K.min1 on 

crystals (mass of 8.034 mg). The Cp curves are shown in shown in Fig. S12. This phase transition 

occurs with an enthalpy changes H = 15.23 kJ.mol1 and H = 14.63 kJ.mol1 for the heating (242.6 

K) and cooling peaks (216.4 K) respectively. These data correspond to transition entropy values of 

S = 62.8 J.mol1.K1 and S = 67.6 J.mol1.K1. The small difference between DSC peak positions 

compared to X-ray and magnetic data is most likely due to a kinetic effect. 

 

 

 

 
Fig. S12 Calorimetric study. Heat capacity on cooling and warming. 
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