Supporting Information

Benign Mid-Gap Halide Vacancy States in 2D-Bismuth-Based Halide Perovskite Microcrystals for Enhanced Broadband Photodetectors

Kuntal Singh^{a#}, Mozakkar Hossain^{ab#}, Pabitra Kumar Nayak^c, Sougata Karmakar^a, Akash Tripathi^d, Prakash Sarkar^a, Pratyasha Rudra^e, A. V. Muhammed Ali^a, G. Krishnamurthy Grandhi^f, Paola Vivo^f, Swastik Mondal^{eg}, K. V. Adarsh^d, Dibyajyoti Ghosh^{ch}, K. D. M. Rao^{a*}

^{*a*} School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India, E-mail: saiskdmrao@iacs.res.in (K. D. M. R.).

^bPresent Address: Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA

^cDepartment of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India

^d Department of Physics, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India

^e CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India

^{*f*} Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI-33014 Tampere University, Finland

^g Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India

^h Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India

Table of content

1. Schematic of the synthesis process of 2DCs ₃ Bi ₂ Br ₃ I _{5.2} microcrystals Figure S1
2. Crystal structure refinement parameters of 2D Cs ₃ Bi ₂ Br ₃ I _{5.2} MC Table S1
3. Fractional atomic coordinates of 2D $Cs_3Bi_2Br_3I_{5.2}MC$ Table S2
4. Anisotropic displacement parameters of $2D Cs_3Bi_2Br_3I_{5.2}MC$ Table S3
5. Bond distance parameter of 2D Cs ₃ Bi ₂ Br ₃ I _{5.2} MC from SCXRD Table S4
6. Bond angle parameter of 2D Cs ₃ Bi ₂ Br ₃ I _{5.2} MC from SCXRD Table S5
7. Powder XRD and TEM SEAD pattern for structural characterization Figure S2
8. Time-dependent Powder XRD for stability measurements Figure S3
9. Structure of pristine and I-vacant Cs ₃ Bi ₂ Br ₃ I ₆ , used in DFT calculations Figure S4
10. The side and top view of pristine Cs ₃ Bi ₂ Br ₃ I ₆ Figure S5
11. Bond lengths and angles from DFT calculation Table S6 & S7
12. Band structure plot for Cs ₃ Bi ₂ Br ₃ I ₆ Cs ₃ Bi ₂ Br ₃ I ₅ considering PBE + SOCFigure S6
13. Simulated absorbance spectra from DFT calculation Figure S7
14. Thermal fluctuation of Cs ₃ Bi ₂ Br ₃ I ₆ over a 3.5 ps timeframe Video S1
15. Thermal fluctuation of Cs ₃ Bi ₂ Br ₃ I ₅ over a 3.5 ps timeframe Video S2
16. Evolution of potential energy microcanonical ensemble
17. Root Mean Square Fluctuation of overall material over the 3.5 ps time Figure S9
18. Radial distribution of iodine atoms with respect to Bi atoms
19. The histogram distribution plots of different bond distances
20. Thermal stability of Cs ₃ Bi ₂ Br ₃ I ₆ and Cs ₃ Bi ₂ Br ₃ I ₅
21. Tauc plot for bandgap estimation from uv-vis abs spectra Figure S12
22. Band gap calculations from UV-Vis abs spectra
23. UV-vis absorption and PL spectrum of Cs ₃ Bi ₂ Br ₃ I _{5.2} in energy scaleFigure S13
24. Thermogravimetric analysis of 2D Cs ₃ Bi ₂ Br ₃ I _{5.2} MCs Figure S14
25. XPS survey spectra of 2D Cs ₃ Bi ₂ Br ₃ I _{5.2}
26. XPS core level spectra of 2D Cs ₃ Bi ₂ Br ₃ I _{5.2}
27. Estimation of stochiometric ratios of constituent atoms from XPS spectra Table S8
28. UPS spectra of 2D Cs ₃ Bi ₂ Br ₃ I _{5.2} MC Figure S17
29. Table for electronic band level calculations Table S9

30. Raman spectra of 2D-Cs ₃ Bi ₂ Br ₃ I _{5.2} MC	Figure S18
31. Details of Raman spectra of Cs ₃ Bi ₂ Br ₃ I _{5.2}	Table S10
32. Details of the calculation of trap density (η_{trap}) and mobility (μ)	Section S3
33. Details of photoconductivity and diffusion length (L_D) calculation	Section S4
34. Modified Hecht equation fitting under various light intensity	Figure S19
35. Photocurrent of 2D-Cs ₃ Bi ₂ Br ₃ I _{5.2} MC-based photodetector	Figure S20
36. Photodetector's figure of merit (FOM) estimation	Section S5
37. Transient photocurrent stability of Cs ₃ Bi ₂ Br ₃ I _{5.2} under 450nm	Figure S21
38. Transient photoresponse at different wavelength and intensity	Figure S22
39. Literature comparison of self-powered photodetector	Table S11
40. Table of rise & decay time of photoresponse under 450 and 650 nm lig	ht Table S12

Experimental section

Synthesis of Cs3Bi2Br3I5.2 MCs: The synthesis of facet-oriented 2D-Cs3Bi2Br3I5.2 microcrystals (MCs) is performed through a modified hot-spin casting method, as illustrated in Figure S1. The precursor solution (0.5 M.L⁻¹) in 2 ml of DMSO is prepared by mixing CsI (259.8 mg), BiBr₃ (148.7 mg), BiI₃ (194.4 mg), and AgI (29.3 mg) powders, followed by stirring (900 rpm) in a closed vial at 70 °C for 16 hours. The fully dissolved precursor solutions are cooled to room temperature and used for the synthesis of 2D-Cs₃Bi₂Br₃I_{5.2} MCs. The glass substrates of 2.5×2.5 cm² area are sequentially ultrasonicated for 10 minutes in soap water, milli-Q water, acetone, and IPA, respectively. Subsequently, the UV-ozone-treated glass substrate is pre-heated at 150°C for 8 minutes, followed by spin coating (two-step) with the precursor solution onto cleaned glass substrates (see Figures S1a and S1b). The precursor solutions are spin-coated (Apex Instruments: SpinNXGP1) on the pre-heated glass substrates. The synthesis of 2D-Cs₃Bi₂Br₃I_{5.2} MCs involves a two-step spin coating process. The first step of spin coating involves spinning at 200 RPM only for 20 seconds, and the second spin coating is performed at 1000 RPM for 60 seconds. Heat transfer from the pre-heated substrate to the precursor solution during spin coating generated heterogeneous nucleation centers at the substrate-solution interface, facilitating subsequent growth. After spin coating, the substrates underwent vacuum drying for 24 hours (see Figure S1c), promoting the growth of nucleation centers submerged in a super-saturated precursor solution to form the facet-oriented 2D-Cs₃Bi₂Br₃I_{5.2} MCs. However, the post-heating process to dry the precursor solution led to the formation of non-perovskite and impurity phases due to the mismatch in halide size and electronegativity. Vacuum drying is essential to forming perovskite MCs and mitigating impurity phase formation. Notably, vacuum-assisted slow solvent evaporation extended the time for nuclei center growth, resulting in 2D-Cs₃Bi₂Br₃I₆MCs featuring iodine vacancies, with dimensions ranging between 30 and 200 µm (see Figure S1d). The modified hot-spin casting method provides precise control over crystal size (20–300 μ m) and facet orientation, enabling the direct synthesis of 2D-Cs₃Bi₂Br₃I_{5.2} without impurity phases.

Figure S1: Schematic diagram of the steps involved in the synthesis of 2D-Cs₃Bi₂Br₃I_{5.2} MCs. (a) The glass substrate is preheated at 150°C. (b) Two-step spin coating on the preheated substrate. (c) Slow vacuum drying in an evacuated chamber. (d) Schematic representation of hexagonal 2D-Cs₃Bi₂Br₃I_{5.2} MCs.

Characterization of iodide deficient Cs₃Bi₂Br₃I_{5.2} MCs: Single crystal X-ray diffraction (XRD) analysis of Cs₃Bi₂Br₃I_{5.2} MCs is performed at room temperature, irradiating with Mo K α ($\lambda = 0.7107$ Å) from a Bruker D8 VENTURE 431 with a 1 μ S 3.0 microfocus X-ray source. Diffracted data is collected through a CMOS detector equipped with the Bruker D8 VENTURE using the software package APEX III. Additionally, Powder X-ray diffraction patterns of Cs₃Bi₂Br₃I_{5.2} MCs are obtained using Bruker AXS D8 Advanced equipment (40 kV, 40 mA, wavelength ~ 0.15406 nm) with Cu K α radiation. Scanning electron microscopy (SEM) and EDX elemental mapping measurements are executed with FESEM (JEOL JSM-7500F). SAED patterns are measured with the transmission electron microscope (JEOL, JEM 2100 F). Defused reflectance spectra are recorded using Agilent carry 5000 UV-VIS- NIR and converted UV-vis absorption spectra using $F(\alpha) = \frac{k}{s} = \frac{(1-R_{\infty})^2}{2R_{\infty}}$.¹ Temperature-dependent to photoluminescence (PL) spectra and Raman spectra are collected by using the Raman Triple spectrometer Jobin-Yvon T64000 by exciting the sample with Nd: YAG green laser (532.5 nm, $\sim 10 \,\mu\text{W}$ power). The confocal microscope images are captured using Zeiss LSM 800 with a GaAsP PMT detector with an excitation wavelength of 561 nm. X-ray photoelectron

spectroscopy (XPS) and Ultra-photoelectron Spectroscopy (UPS) measurements are carried out using a PHI 500 Versa Probe-III instrument with a photon energy of 21.2 eV.

Fabrication of Cs₃Bi₂Br₃I_{5.2} MC-based photodetector: The fabrication of the Cs₃Bi₂Br₃I_{5.2} MC-based photodetector involves the use of an asymmetric gap electrode (ITO/Au), where Au electrodes are deposited on etched ITO glass through thermal evaporation using a Hind High Vacuum Company Private Limited system (Model: 12A4D). Micro imprint lithography is employed to transfer Cs₃Bi₂Br₃I_{5.2} MCs onto the asymmetric gap electrode, utilizing a thick PDMS mold and a few drops of isopropanol (IPA) to ensure efficient transfer onto the substrate. The active area of the photodetector is approximately 890×10^{-12} m². Current-voltage characteristics and photocurrent measurements are performed using a Keithley 2634B system connected to a Lakeshore PS-100 probe station. Wavelength-dependent photocurrent measurements are conducted using an F4 spectral illumination system, while transient photo-response is measured by modulating light intensity at different frequencies with a Scientific Instruments SM5070 function generator connected to white LEDs. I-V measurements for modified Hecht equation are carried out in a symmetric in-plane geometry (Au/MoO₃/Cs₃Bi₂Br₃I_{5.2}/MoO₃/Au), with 20 nm MoO3 layer and 50 nm Au electrodes separated by 60 µm. A 95 × 180 µm² device area was used for transient photocurrent measurements.

Computational Methodology: All DFT-based simulations employed the widely used Vienna Ab Initio Simulation Package (VASP), incorporating a Projected Augmented Wave (PAW) methodology for ion-electron interactions.^{2–4} The selected cut-off energy for the plane wave basis set was established at 520 eV to facilitate structural relaxation, with the geometry adjusted until the interionic force diminished below 0.01 eV/Å.⁵ The semi-local Perdew-Burke-Ernzerhof (PBE) function within the framework of Generalized Gradient Approximation (GGA) is adopted for the exchange-correlation interaction in the simulations.⁶ A Γ -centered 4 × 4 × 2 and 9 × 9 × 5 Monkhorst-Pack k-point mesh was utilized for cell relaxation and electronic properties calculation, respectively.⁷ Additionally, static structural bond-parameter assessments are conducted using VESTA software.⁸ Electronic property analyses for $Cs_3Bi_2Br_3I_6$ and $Cs_3Bi_2Br_3I_5$ are performed through SUMO.⁹ For ab initio molecular dynamics (AI-MD) simulations, we constructed a 2 × 2 × 2 supercell comprising 8 formula units and a total of 112 atoms and 104 atoms for pristine $Cs_3Bi_2Br_3I_6$ and $Cs_3Bi_2Br_3I_5$. A single Gammapoint mesh was utilized, along with a time step of 1 fs and a plane-wave energy cutoff of 400 eV. The AIMD simulations began with the DFT-optimized structure, which was incrementally heated to 300 K through repeated velocity rescaling over 3 ps. To ensure thermal equilibrium, an additional 4 ps of trajectory data was generated using the canonical ensemble. Finally, we performed 3.5 ps of simulations under the microcanonical ensemble, and the resulting trajectory was employed for structural dynamics and thermal stability analysis.

Empirical formula	Cs3Bi2Br3I5.2
Formula weight	1718.84
Temperature/K	180.15
Crystal system	Trigonal
Space group	P-3m1
a/Å	8.2207(12)
b/Å	8.2207(12)
c/Å	10.104(2)
α/°	90
β/°	90
γ/°	120
Volume/Å ³	591.3(2)
Octahedral Volume/Å ³	33.5601
Z	1
Density (calculated) g/cm ³	4.827
Absorption coefficient (μ)/mm ⁻¹	31.266
Radiation	$MoK_{\alpha} (\lambda = 0.71073)$
Goodness-of-fit	1.164
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0184, wR_2 = 0.0425$
Final R indexes [all data]	$R_1 = 0.0196, wR_2 = 0.0431$
Largest diff. peak/hole / e Å ⁻³	0.73/-0.65

Table S1: Crystal structure refinement parameters of 2D Cs₃Bi₂Br₃I_{5.2} MC using single crystal X-ray diffraction (SCXRD) measurements.

Table S2: Fractional atomic coordinates $(\times 10^4)$	and equivale	nt isotropic	displacement
parameters (Å ² ×10 ³) of 2D Cs ₃ Bi ₂ Br ₃ I _{5.2} MCc, Uc	is defined a	as $1/3$ of the	e trace of the
orthogonalized U _{ij} tensor.			

Atom	Wyckoff sites	x	y	Z	U(eq)*
Bil	2d	3333.33	6666.67	3170.8(3)	34.32(15)
Cs2	2d	6666.67	13333.33	1788.5(9)	72.1(3)
Cs1	1b	0	10000	5000	77.7(4)
I1	6i	1647.2(4)	8352.8(4)	1634.3(6)	66.8(3)
Br1	3f	5000	5000	5000	84.9(4)

Table S3: Anisotropic displacement parameters (Å²×10³) for 2D-Cs₃Bi₂Br₃I_{5.2} MC Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Atom	U11	U22	U33	U23	U13	U12
Bi1	35.91(17)	35.91(17)	31.1(2)	0	0	17.95(9)
Cs2	71.4(4)	71.4(4)	73.7(6)	0	0	35.7(2)
Cs1	81.2(6)	81.2(6)	70.8(9)	0	0	40.6(3)
I1	73.6(4)	73.6(4)	66.9(8)	10.94(14)	10.94(14)	47.1(4)
Br1	106.3(8)	106.3(8)	74.8(8)	17.2(3)	-17.2(3)	77.7(9)

Table S4: Bond distance parameters (Å) for 2D-Cs₃Bi₂Br₃I_{5.2} microcrystal

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		$Cs_3Bi_2Br_3I_{5.22}$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Length						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Atom1	Atom2	(Å)						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Bi1(1)	I1(1)	2.8590(6)						
Bi1(1) Br1(2) 3.0079(4) Cs2(1) I1(1), I1(3), I1(4), I1(6) and I1(7) 4.1134(6) Cs2(1) I1(5), I1(8), I1(4), I1(6) and I1(7) 4.2101(11) Cs2(1) Br1 4.0201(9)	Bi1(1)	I1(2)	2.8590(6)						
Cs2(1)I1(1), I1(3), I1(4), I1(6) and I1(7)4.1134(6)Cs2(1)I1(5), I1(8), I1(4), I1(6) and I1(7)4.2101(11)Cs2(1)Br14.0201(9)	Bi1(1)	Br1(1)	3.0079(4)						
Cs2(1) I1(5), I1(8), I1(4), I1(6) and I1(7) 4.2101(11) Cs2(1) Br1 4.0201(9)	Bil(1)	Br1(2)	3.0079(4)						
Cs2(1) Br1 4.0201(9)	Cs2(1)	I1(1), I1(3), I1(4), I1(6) and I1(7)	4.1134(6)						
	Cs2(1)	I1(5), I1(8), I1(4), I1(6) and I1(7)	4.2101(11)						
Cs1 I(1) 4.1311(9)	Cs2(1)	Br1	4.0201(9)						
	Cs1	I(1)	4.1311(9)						
Cs1 Br1 4.1104(6)	Cs1	Br1	4.1104(6)						

Table S5: Bond angle parameters (Å) for 2D Cs₃Bi₂Br₃I_{5.2} microcrystal

Cs3Bi2Br3I5.22					
Atom1-Atom2 - Atom3 Angle (Degree)					
Bi1-Br1-Bi1	180.0000(0)				
I1-Bi1-Br1	174.967(19)				

Figure S2. Structural Characterization of Cs₃Bi₂Br₃I_{5.2} MCs. (a) Experimental powder XRD patterns at room temperature of 2D Cs₃Bi₂Br₃I_{5.2} compared with simulated XRD patterns. (b) TEM SAED pattern of 2D Cs₃Bi₂Br₃I_{5.2} MCs providing single crystal nature.

Figure S3. Time-dependent XRD of 2D-Cs₃Bi₂Br₃I_{5.2} MCs after exposure to the ambient environment for two weeks

Figure S4. (a) The connected octahedra are shown after creating an I-vacancy (shown as dotted lines). Capital alphabets represent the nomenclature of bonds, and the bond angles are determined by the bonds involved in forming that particular angle. For example, the inter-octahedral angle involves the E and C' bonds, thus named as E-C'. (b) and (c) depict schematics of pristine Cs₃Bi₂Br₃I₆ and I-vacancy Cs₃Bi₂Br₃I₆, respectively.

Figure S5. The (a) side view and (b) top view of pristine $Cs_3Bi_2Br_3I_6$. (a) shows that the iodine atoms occupy positions along the edges of the layered structure, and the bromine atoms form bonds with neighboring octahedra. (b) shows the symmetrical arrangement of all iodine and bromine maintaining an equivalent chemical environment, allowing us to select any iodine atom for removal to model the iodine vacancy.

Table S6: Structural parameters include bond lengths of optimized (using DFT-based simulation) geometry of Cs₃Bi₂Br₃I₆ and Cs₃Bi₂Br₃I₅ MCs at 0K. Follow **Figure S4a** for the nomenclature of the bond and bond angles.

		Octahedron 1	Octahedron 2		
Bond length	Pristine	I-defect	Bond length	Pristine	I-defect
(Å)			(Å)		
А	2.98	3.11	A'	2.94	3.03
В	2.94		B'	2.98	2.98
С	2.94	2.96	C'	2.98	3.03
D	2.94	2.96	D'	2.98	3.03
Е	2.98	2.98	E'	2.94	2.96
F	2.98	2.98	F'	2.94	3.96

Table S7: Structural parameters include bond angles of optimized (using DFT-based simulation) geometry of $Cs_3Bi_2Br_3I_6$ and $Cs_3Bi_2Br_3I_5$ 2D-MHP MCs at 0K. Follow **Figure S4a** for the nomenclature of the bond and bond angles.

Inter- Octahedral	Octahedron 1			Octah	edron 2
Bond Angle (°)	Pristine I-defect		Bond Angle (°)	Angle (°) Pristine	
A-B	175.66		A'-B'	175.66	175.99
C-E	175.66	175.65	С'-Е'	175.66	173.49
D-F	175.66	175.65	D'-F'	175.66	173.49
Inter-Octahedral	Pristine		I-defect		
E-C'	18	80	160.61		

Figure S6. Band structure plot for (a) pristine $Cs_3Bi_2Br_3I_6$ and (b) $Cs_3Bi_2Br_3I_5$ considering PBE functional with spin-orbit coupling effects. The systematic underestimation of the band gap (compared to Figure 2) appears due to the usage of the semi-local PBE exchange-correlation functional in these simulations.

Figure S7: Simulated absorption spectra of pristine $Cs_3Bi_2Br_3I_6$ and $Cs_3Bi_2Br_3I_5$ with an I-vacancy

Video S1. Thermal fluctuation of pristine Cs₃Bi₂Br₃I₆ over a 3.5 ps timeframe.

Video S1. Thermal fluctuation of pristine Cs₃Bi₂Br₃I₅ over a 3.5 ps timeframe.

Figure S8. Evolution of potential energy over 3.5 ps trajectories in a microcanonical ensemble of (a) pristine ($Cs_3Bi_2Br_3I_6$) and (b) I-vacancy ($Cs_3Bi_2Br_3I_5$) materials. Similarly, temperature fluctuation over the trajectories for (c) pristine ($Cs_3Bi_2Br_3I_6$) and (d) I-vacancy ($Cs_3Bi_2Br_3I_5$) materials.

Figure S9. Root Mean Square Fluctuation (RMSF) of overall material over the 3.5 ps time for (a) pristine (Cs₃Bi₂Br₃I₆) and (b) I-vacancy (Cs₃Bi₂Br₃I₅) materials. RMSF of Cs atoms over the trajectories for (c) pristine (Cs₃Bi₂Br₃I₆) and (d) I-vacancy (Cs₃Bi₂Br₃I₅) materials.

Figure S10. Radial distribution of iodine atoms with respect to Bi atoms for (a) pristine $(Cs_3Bi_2Br_3I_6)$ and I-vacancy materials $(Cs_3Bi_2Br_3I_5)$. Similarly, the radial distribution of bromine atoms with respect to bismuth atoms for (b) pristine $(Cs_3Bi_2Br_3I_6)$ and I-vacancy materials $(Cs_3Bi_2Br_3I_5)$.

Figure S11. The histogram distribution plots of (a) intra-octahedral Bi-Br bond distances, (b) intra-octahedral Bi-I bond distances, and (c) interlayer I-I distance (terminal I-I distance across the layer along the c-direction).

Section 1: Both materials show thermal stability, with the potential energy remaining stable throughout the simulation, confirming the preservation of the layered structure over time. The temperature fluctuations are centered around 300 K for both pristine Cs₃Bi₂Br₃I₆ and Cs₃Bi₂Br₃I₅ (**Figure S8**). The root means square fluctuations (RMSFs) of overall materials and Cs atoms show very minimal deviation of atoms from the crystal lattice, illustrating the structural stability (**Figure S9**). The radial distribution of bromine and iodine atoms with respect to bismuth atoms (**Figure S10**) and the histogram plot of Bi-I and Bi-Br bond distance over the MD- trajectories (**Figure S11**) shows that all the iodine and bromine atoms maintain their lattice position with minimal deviation (standard deviations (SD) 0.07-0.17 Å). Similarly, the histogram plot of interlayer I...I distance atoms analysis (SD: 0.23/0.24 Å) further supports the thermal stability of these materials (**Figure S11c**).

Figure S12. Tauc plot from UV-Vis absorption spectra to estimate the (a) indirect and (b) direct bandgap of 2D-Cs₃Bi₂Br₃I_{5.2} MCs.

Section 2: The bandgap of 2D-Cs₃Bi₂Br₃I_{5.2} is calculated from Tauc plot analysis following the below equation.¹

$$(\alpha h\nu)^{\frac{1}{n}} = A(h\nu - E_g) - - - - - - - - - - - - - (1)$$

Where α , h, v, A, and Eg represent the absorption coefficient (cm⁻¹), Planck's constant, frequency, constant, and optical bandgap, respectively. Here, n is a dimensionless parameter, set to 2 for an indirect bandgap and $\frac{1}{2}$ for a direct bandgap. From the Tauc plot in **Figure S12**, the indirect and direct bandgaps of 2D-Cs₃Bi₂Br₃I_{5.2} are determined as 2.03 and 2.12, respectively, which aligns closely with the reported 2 eV bandgap of 2D-Cs₃Bi₂Br₃I₆.

Figure S13. (a) UV-vis absorption spectrum of Cs₃Bi₂Br₃I_{5.2} microcrystals obtained via diffuse reflectance spectroscopy. Inset: Optical microscopy image of Cs₃Bi₂Br₃I_{5.2} MCs on a glass substrate. (b) Photoluminescence (PL) spectrum of Cs₃Bi₂Br₃I_{5.2} MCs collected using a microfocus laser system. Inset: Magnified view of the PL spectrum at lower energy.

Figure S14. Thermogravimetric analysis of 2D Cs₃Bi₂Br₃I_{5.2} MCs

Thermogravimetric analysis is performed in a nitrogen atmosphere to evaluate the thermal stability of 2D Cs₃Bi₂Br₃I_{5.2} MCs. The study spanned temperatures from 30°C to 900°C, with a heating rate of 10°C per minute, as depicted in **Figure S14**. Initially, weight loss was noted at 430°C, followed by subsequent losses at 560°C, corresponding to the sublimation of BiI₃ and BiBr₃, respectively.^{10,11} 33% of the weight loss is observed within this temperature range. A notable decline in weight is observed at 662°C, attributed to the loss of CsI material.¹¹ Thus, the material exhibits commendable thermal stability at elevated temperatures.

Figure S15. X-ray photoelectron spectroscopy (XPS) survey spectra of 2D-Cs₃Bi₂Br₃I_{5.2} MC.

Figure S16. Core level XPS spectra of (a) Cs 3d, (b) Bi 4f, (c) Br 3d, and (d) I 3d in 2D-Cs₃Bi₂Br₃I_{5.2} MC.

Table S8: Estimation of atomic ratios of constituent elements in 2D Cs₃Bi₂Br₃I_{5.2} from core level XPS spectra

Ele m- ents	States	Peak position (eV)	Area	RSF Value	Total area	No. of scan	Area per single scan	Stoic hiom etric ratio	Ideal ratio
Cs^+	3d _{5/2}	724.29	71153.9	23.76	5450.	5	1090.0	2.27	3
	3d _{3/2}	738.27	40422.4	16.46	3				
Bi ³⁺	$4f_{7/2}$	158.25	55340.6	13.9	7683. 3	8	960.37	2	2
	4f _{5/2}	163.54	40468.7	10.93	5				
Br-	3d _{5/2}	68.42	14344.4	1.68	20563	15	1370.9	2.9	3
	3d _{3/2}	69.47	12376.4	1.16	.9				
I-	3d _{5/2}	618.33	128448	19.87	12720 .5	5	2544.1	5.29	5.2
	3d _{3/2}	629.73	86147.6	13.77	.5				

Ag	3d _{5/2}	367.23	29010.4	10.66	5143. 93	25	205.75	0.42	-
	3d _{3/2}	373.24	17878.3	7.38					

Figure S17. (a) UPS survey spectra of iodide deficient 2D Cs₃Bi₂Br₃I_{5.2} MCs. (b) High energy UPS cut-off region, (c) low energy UPS tail onset region.

Table S9: Electronic Band levels of 2D Cs₃Bi₂Br₃I_{5.2} micro crystals, calculated from UPS spectra

Work Function (<i>E_F</i>)	E _F -E _{VBM}	E _{VBM}	Bandgap (Eg)	E _{CBM}	Semiconducting type
5.38	1.68	7.06	2.03	5.03	n-type

Figure S18. Raman spectra of 2D-Cs₃Bi₂Br₃I_{5.2} MC recorded with a 530 nm excitation wavelength.

Table S10: Details of Rama	n spectra of Cs ₃ Bi ₂ Br ₃ I _{5.2}
----------------------------	---

Symmetry	Description	Wavenumber (cm ⁻¹)	Energy (meV)	Ref.
E _{2g}	Bridge Bi–Br symmetric stretch	169.06	21.11	12
A _{1g}	terminal Bi–I symmetric stretch	145.46	18.16	13
Eg	Bi-Br bending mode	66.83	8.34	12
A _{1g}	Bi-I bending mode	57.47	7.17	13

Section 3: Details of the calculation of trap density (η_{trap}) and mobility (μ) .

$$\eta_{trap} = \frac{2\varepsilon_0 \varepsilon V_{TFL}}{q l^2} - - - - - (S2)^{-14}$$

$$J_d = \frac{9}{8} \varepsilon_0 \varepsilon \mu \frac{V^2}{l^3} - - - - - - (S3)^{15}$$

where, $\eta_{trap} = trap \text{ density (cm}^{-3})$

 $\varepsilon_0 =$ free space permittivity

 ε = relative dielectric constant of perovskite (12.47 for Cs₃Bi₂Br₃I₆)

q = elementary charge

l = Gap between two electrodes, 55 µm.

 J_d = current density

 $\mu = \text{carrier mobility}$

V = applied voltage

Section 4: Details of photoconductivity and diffusion length (L_D) calculation.

Where, I = photocurrent

 I_0 = saturated photocurrent

 $\mu\tau$ = mobility-lifetime product

 $l = \text{Gap between two electrodes}, 55 \,\mu\text{m}$

V = applied voltage

S = surface recombination velocity

 $k_B = \text{Boltzmann constant}$

T = sample temperature

e = elementary charge

Figure S19. Fitting of photocurrent as a function of voltage using the modified Hecht equation under various light intensities (0.18 to 2.64 mW/cm²).

Figure S20: Photocurrent of 2D-Cs₃Bi₂Br₃I_{5.2} MC-based photodetector across the wavelength range from 400 nm to 800nm.

Section 5: Photodetector figure of merit (FOM) estimation

Responsivity $(R_{\lambda})^{18}$

$$R_{\lambda} = \frac{J_{ph}}{P_{Light}} - - - - - - - (S6)$$
$$J_{ph} = \frac{I_{ph}}{A} - - - - - - - - (S7)$$

Where, R_{λ} = responsivity

 J_{ph} = photocurrent density

 $I_{ph} = I_l - I_d =$ photocurrent

 $I_l =$ light current

 $I_d = \text{dark current}$

 P_{Light} = light intensity

A = active area of the device

Detectivity (D)¹⁸

Where, *D*= Detectivity

 R_{λ} = responsivity

q = charge of the electron

Details of Noise Equivalent Power (NEP).¹⁸

$$NEP = \frac{S_I}{R_{\lambda}} - - - - - - - (S9)$$
$$S_I = \sqrt{\frac{\langle I_{noise}^2 \rangle}{1 Hz}} - - - - - - - - (S10)$$

Where, *NEP* = Noise equivalent power

 S_I = RMS value of dark current density at 1 Hz bandwidth

 $I_{noise} = \text{dark current}$

 R_{λ} = wavelength-dependent responsivity

Rise and fall time calculation.¹⁸

$$I = I_0 - I_0 \times e^{\left(-\frac{x}{t_r}\right)} - - - - - - - - - - (S11)$$

$$I = I_0 + A_1 \times e^{(-x/t_f)} - - - - - - - - - (S12)$$

I = current

 I_0 = initial value of current

 A_I = independent variables

 t_r = rise time, t_f = fall time, x = time

Figure S21. Transient photocurrent stability of Cs₃Bi₂Br₃I_{5.2} based photodetector with 828 on-off cycles under 0.3 Hz 450nm light illumination.

Figure S22. Real-time photocurrent response of the photodetector under 450 nm light at intensities of (a) 13 μ W/cm² and (b) 0.6 μ W/cm², and under 650 nm light at intensities of (c) 12 μ W/cm² and (d) 0.7 μ W/cm².

Table S11: Comparison of Bi-based halide perovskite self-powered photodetector performance
in the literature

Sl.	Material	Morp	Device structure	R	D (Jones)	Range of	Refer
No.	(structure)	hology		(A/W)		detection	ence
1.	$Cs_3Bi_2Br_3I_{5.2}$	MC	Au/Cs ₃ Bi ₂ Br ₃ I _{5.2} /	0.9	1.6×10^{12}	Visible	Our
	(2D)		ITO		@ 540 nm	and NIR	work
2.	Cs ₃ Bi ₂ I ₉	TF	FTO/Cs ₃ Bi ₂ I ₉ /Ag	7.29×	2.17×10^{3}	Visible	19
	(0D)			10^{-8}			
3.	Cs ₃ Bi ₂ I ₉	MC	ITO/SnO ₂ /	0.052	2.9×10^{11}	Visible	20
	(0D)		Cs ₃ Bi ₂ I ₉ /		@ 405 nm		
			PTAA/Au/ITO				
4.	Cs ₃ Bi ₂ I ₆ Br ₃	TF	ITO/PEDOT:PSS/	0.015	4.6×10^{11}	Visible	21
	(2D)		Cs ₃ Bi ₂ I ₆ Br ₃ /C ₆₀ /B		@ 400 nm		
			CP/Ag				
5.	$Cs_3Sb_2I_9$	TF	Au/PolyTPD/	0.062	3.5×10^{12}	Visible	22
	(2D)		Cs ₃ Sb ₂ I _{9-x} Cl _x /TiO		@ 505 nm		
			₂ /FTO				

6.	$Cs_3Sb_2I_{9-x}Cl_x$	TF	Au/PolyTPD/	0.205	6.1×10^{12}	Visible	22
	(2D)		Cs ₃ Sb ₂ I _{9-x} Cl _x /TiO		@ 505 nm		
			₂ /FTO				
7.	Rb ₃ Sb ₂ I ₉	TF	Au/PolyTPD/	0.174	4.3×10^{12}	Visible	22
	(0D)		Rb ₃ Sb ₂ I ₉ /TiO ₂ /		@ 505 nm		
			FTO				
8.	Cs ₂ AgBiBr ₆	TF	Au/Cs2AgBiBr6	0.0001	2.1×10^{10}	Visible	23
	(3D)		/SnO ₂ /ITO		@ 350 nm		
9.	Cs ₃ Bi ₂ Br ₉	TF	ITO/NiO _x /	0.0043	1.3×10^{11}	Visible	24
	(2D)		Cs ₃ Bi ₂ Br ₉ /Au		@ 420 nm		
10.	Ns-MA ₃ Bi ₂ I ₉	TF	FTO/c-TiO ₂ / Ns-	0.0001	0.61×10^{7}	Visible	25
	(0D)		MA3Bi2I9 /graphite		@ 480 nm		

Table S12. Rise and Decay Times for Cs₃Bi₂Br₃I_{5.2}-Based Photodetector Under Band-to-Band and Mid-Gap Light Illumination

S. No.	Absorption	Wavelength	Rise time	Decay time	
	Region	(nm)	(Tr, ms)	(T _d , ms)	
1	Band to band	450	238	248	
2	Mid-gap	650	144	163	

Note and references

- 1 P. R. Jubu, F. K. Yam, V. M. Igba and K. P. Beh, *J. Solid State Chem.*, 2020, **290**, 121576.
- 2 G. Kresse and J. Hafner, *Phys. Rev. B*, 1994, **49**, 14251–14269.
- 3 G. Kresse and J. Hafner, *Phys. Rev. B*, 1993, **47**, 558–561.
- 4 D. Joubert, *Phys. Rev. B Condens. Matter Mater. Phys.*, 1999, **59**, 1758–1775.
- 5 G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169–11186.
- 6 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865–3868.
- 7 J. D. Pack and H. J. Monkhorst, *Phys. Rev. B*, 1977, **16**, 1748–1749.
- 8 K. Momma and F. Izumi, J. Appl. Crystallogr., 2011, 44, 1272–1276.
- 9 A. M Ganose, A. J Jackson and D. O Scanlon, J. Open Source Softw., 2018, 3, 717.
- 10 M. Leng, Y. Yang, K. Zeng, Z. Chen, Z. Tan, S. Li, J. Li, B. Xu, D. Li, M. P. Hautzinger, Y. Fu, T. Zhai, L. Xu, G. Niu, S. Jin and J. Tang, *Adv. Funct. Mater.*, 2018, 28, 1704446 (1–11).
- 11 J. Gu, G. Yan, Y. Lian, Q. Mu, H. Jin, Z. Zhang, Z. Deng and Y. Peng, RSC Adv., 2018,

8, 25802–25807.

- 12 M. Y. Valakh, M. P. Lisitsa, E. Y. Peresh, O. V. Trylis and A. M. Yaremko, J. Mol. Struct., 1997, **436–437**, 309–313.
- 13 P. Acharyya, K. Pal, A. Ahad, D. Sarkar, K. S. Rana, M. Dutta, A. Soni, U. V. Waghmare and K. Biswas, *Adv. Funct. Mater.*, 2023, **33**, 1–10.
- 14 M. Bouzidi, M. Ben Bechir, D. R. Almalawi, I. H. Smaili, F. Aljuaid and N. I. Aljuraide, *Opt. Mater. (Amst).*, 2024, **154**, 115640.
- 15 V. M. Le Corre, E. A. Duijnstee, O. El Tambouli, J. M. Ball, H. J. Snaith, J. Lim and L. J. A. Koster, ACS Energy Lett., 2021, 6, 1087–1094.
- 16 Y. Liu, Z. Xu, Z. Yang, Y. Zhang, J. Cui, Y. He, H. Ye, K. Zhao, H. Sun, R. Lu, M. Liu, M. G. Kanatzidis and S. (Frank) Liu, *Matter*, 2020, 3, 180–196.
- D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland,
 A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed,
 E. H. Sargent and O. M. Bakr, *Science (80-.).*, 2015, 347, 519–522.
- 18 K. D. M. Rao, M. Hossain, Umesh, A. Roy, A. Ghosh, G. S. Kumar, P. Moitra, T. Kamilya, S. Acharya and S. Bhattacharya, *Nanoscale*, 2020, **12**, 11986–11996.
- 19 S. Devasia, S. Shaji, D. A. Avellaneda, J. A. A. Martinez and B. Krishnan, J. Alloys Compd., 2022, **893**, 162294.
- 20 K. Dong, H. Zhou, M. Xiao, P. Gui, Z. Gao, F. Yao, W. Shao, C. Liu, C. Tao, W. Ke and G. Fang, *Appl. Phys. Lett.*, 2022, **120**, 1312–1317.
- 21 D. Liu, B.-B. Yu, M. Liao, Z. Jin, L. Zhou, X. Zhang, F. Wang, H. He, T. Gatti and Z. He, *ACS Appl. Mater. Interfaces*, 2020, **12**, 30530–30537.
- 22 J. Mei, M. Liu, P. Vivo and V. Pecunia, Adv. Funct. Mater., 2021, 31, 2106295.
- 23 L. Z. Lei, Z. F. Shi, Y. Li, Z. Z. Ma, F. Zhang, T. T. Xu, Y. T. Tian, D. Wu, X. J. Li and G. T. Du, J. Mater. Chem. C, 2018, 6, 7982–7988.
- 24 Y. Liu, Y. Gao, J. Zhi, R. Huang, W. Li, X. Huang, G. Yan, Z. Ji and W. Mai, *Nano Res.*, 2022, **15**, 1094–1101.
- 25 A. Bhorde, S. Nair, H. Borate, S. Pandharkar, R. Aher, A. Punde, A. Waghmare, P. Shinde, P. Vairale, R. Waykar, V. Doiphode, V. Jadkar, Y. Hase, S. Rondiya, N. Patil, M. Prasad and S. Jadkar, *New J. Chem.*, 2020, 44, 11282–11290.