Supporting Information

Controllable topological phase transition via ferroelectric-paraelectric switching

in ferromagnetic single-layer M_IM_{II}Ge₂X₆ family

Jingbo Bai,¹ Tie Yang,¹ Zhenzhou Guo,^{3*} Ying Liu,² Yalong Jiao,² Weizhen Meng,^{2*}

Zhenxiang Cheng^{3*}

1. School of Physical Science and Technology, Southwest University, Chongqing 400715, China.

2. College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal

University, Shijiazhuang 050024, China.

 Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, 2500, Australia.

*Email: <u>zg855@uowmail.edu.au, mengweizhen@hebtu.edu.cn, cheng@uow.edu.au</u>

Materials	PE	FE					
		S1 (<i>3d</i>) (0.33108,0.04411,0.45785)					
	S (61) (0.32983, 0.03906, 0.42971)	S2 (3d) (0.98402,0.66965,0.53975)					
	Ir (1b) (0.00000, 0.00000, 0.50000)	Ir (1a) (0.00000,0.00000,0.49884)					
KellGe ₂ S ₆	Re (1f) (0.66667, 0.33333, 0.50000)	Re (1c) (0.66667,0.33333,0.49755)					
	Ge (2h) (0.33333, 0.66667, 0.55602)	Ge (1b) (0.33333,0.666667,0.515790)					
		Ge (1b) (0.33333,0.666667,0.43195)					
	5 (61) (0 22026 0 04197 0 42594)	Se1 (3d) (0.32997,0.04946,0.45454)					
	S(01)(0.52930, 0.04187, 0.42384)	Se2 (3d) (0.98100,0.66994,0.54285)					
DalaCa Sa	IF(1b)(0.00000, 0.00000, 0.30000)	Ir (1a) (0.00000,0.00000,0.49940)					
KelfGe ₂ Se ₆	Re(1)(0.00007, 0.33333, 0.30000)	Re (1c) (0.66667,0.33333,0.49805)					
	Ge (2 <i>n</i>) (0.55555,0.00007,0.55080)	Ge (1b) (0.33333,0.666667,0.51518)					
		Ge (1b) (0.33333,0.666667,0.43213)					
		Se1 (3d) (0.33245,0.04762,0.45279)					
	Se (61) (0.33813,0.04085,0.42319)	Se2 (3d) (0.98008,0.65584,0.54483)					
DoAlCo So	Al (1b) (0.00000,0.00000,0.50000)	Al (1a) (0.00000,0.00000,0.50299)					
ReAlde2Se6	Re (1f) (0.66667,0.33333,0.50000)	Re (1c) (0.66667,0.33333,0.49761)					
	Ge (2h) (0.33333,0.666667,0.55641)	Ge (1b) (0.33333,0.666667,0.51383)					
		Ge (1b) (0.33333,0.666667,0.42964)					
		Se1 (3d) (0.37126,0.03889,0.42896)					
	S (61) (0.37520,0.03798,0.43527)	Se2 (3d) (0.96119,0.62884,0.55843)					
PoDiCo So	Bi (1b) (0.00000,0.00000,0.50000)	Bi (1a) (0.00000,0.00000,0.49365)					
KebiOe ₂ Se ₆	Re (1f) (0.66667,0.33333,0.50000)	Re (1c) (0.66667,0.33333,0.49372)					
	Ge (2h) (0.33333,0.666667,0.54659)	Ge (1b) (0.33333,0.666667,0.59437)					
		Ge (1b) (0.33333,0.666666,0.39302)					
		Se1 (3d) (0.32950,0.04877,0.45425)					
	Se (61) (0.32955,0.04165,0.42522)	Se2 (3d) (0.98025,0.66870,0.54304)					
PaPhGa Sa	Rh (1b) (0.00000,0.00000,0.50000)	Rh (1a) (0.00000,0.00000,0.49960)					
KeKilde ₂ Se ₆	Re (1f) (0.66667,0.33333,0.50000)	Re (1c) (0.66667,0.33333,0.49818)					
	Ge (2h) (0.33333,0.666667,0.55699)	Ge (1b) (0.33333,0.666667,0.51512)					
		Ge (1b) (0.33333,0.666667,0.43215)					
		S1 (<i>3d</i>) (0.35381,0.05032,0.45815)					
ReSnGe ₂ S ₆	S (61) (0.36300,0.04025,0.43634)	S2 (3d) (0.97866,0.62496,0.53792)					
	Sn (1b) (0.00000,0.00000,0.50000)	Sn (1a) (0.00000,0.00000,0.50178)					
	Re (1f) (0.66667,0.33333,0.50000)	Re (1c) (0.66667,0.33333,0.49656)					
	Ge (2h) (0.33333,0.666666,0.54862)	Ge (1b) (0.33333,0.666667,0.51280)					
		Ge (1b) (0.33333,0.666667,0.43757)					
TcIrGe ₂ S ₆	S (61) (0 32882 0 03756 0 43995)	S1 (<i>3d</i>) (0.33116,0.03889,0.45833)					
	$I_r(1h) (0.02002,0.05750,0.45755)$	S2 (<i>3d</i>) (0.98425,0.67090,0.53951)					
	T_{c} (16) (0.00000,0.00000,0.50000) T_{c} (16) (0.66667 0.23232 0.50000)	Ir (1a) (0.00000,0.00000,0.49871)					
	$G_{e}(2h) (0.33333, 0.5555, 0.50000)$	Tc (1c) (0.66667,0.33333,0.49735)					
	(2n)(0.33333,0.00007,0.34703)	Ge (1b) (0.33333,0.666667,0.51617)					

Table SI. Wyckoff sites of atoms in ferroelectric (FE) and paraelectric (PE) phases of 11 2D multiferroic materials.

		Ge (1b) (0.33333,0.666667, 0.43119)
		Se1 (3d) (0.32970,0.04649,0.45088)
	Se (61) (0.32841,0.04052,0.42790)	Se2 (3d) (0.98113,0.67074,0.54755)
Tal#Ca Sa	Ir (1b) (0.00000,0.00000,0.50000)	Ir (1a) (0.00000,0.00000,0.49993)
1011Ge2Se6	Tc (1f) (0.66667,0.33333,0.50000)	Tc (1c) (0.66667,0.33333,0.49834)
	Ge (2h) (0.33333,0.666667,0.55444)	Ge (1b) (0.33333,0.666667,0.51762)
		Ge (1b) (0.33333,0.666667,0.42577)
		S1 (3d) (0.32970,0.04649,0.45088)
	S (61) (0.32375,0.03188 ,0.42803)	S2 (<i>3d</i>) (0.98113,0.67074,0.54755)
WirGesS	Ir (1b) (0.00000,0.00000,0.50000)	Ir (1a) (0.00000,0.00000,0.49993)
w 1100 ₂ 36	W (1f) (0.66667,0.33333,0.50000)	W (1c) (0.66667,0.33333,0.49834)
	Ge (2h) (0.33333,0.666667,0.55453)	Ge (1b) (0.33333,0.666667,0.51762)
		Ge (1b) (0.33333,0.666667,0.42577)
		Se1 (3d) (0.34337,0.01809,0.45481)
	Se (61) (0.33265,0.03360,0.42464)	Se2 (3d) (0.95702,0.66433,0.54672)
WAlGesSe	A1 (1b) (0.00000,0.00000,0.50000)	Al (1a) (0.00000,0.00000,0.49776)
WAIG02506	W (1f) (0.66667,0.33333,0.50000)	W (1c) (0.66667,0.33333,0.50068)
	Ge (2h) (0.33333,0.666667,0.55466)	Ge (1b) (0.33333,0.666667,0.57297)
		Ge (1b) (0.33333,0.666667,0.48708)
		Te1 (<i>3d</i>) (0.32956,0.05872,0.44866)
WPtGe ₂ Te ₆	Te (61) (0.32964,0.04144,0.42129)	Te2 (<i>3d</i>) (0.98337,0.67228,0.54713)
	Pt (1b) (0.00000,0.00000,0.50000)	Pt (1a) (0.00000,0.00000,0.49941)
	Re (1f) (0.66667,0.33333,0.50000)	W (1c) (0.66667,0.33333,0.49818)
	Ge (2h) (0.33333,0.666667,0.55828)	Ge (1b) (0.33333,0.666666,0.51568)
		Ge (1b) (0.33333,0.666667,0.43633)

Table SII. Lattice constants of ferroelectric (FE) and paraelectric (PE) phases for 11 2D multiferroic materials.

Materials	PE	FE			
ReIrGe ₂ S ₆	a=b=6.11 Å	a=b=6.26 Å			
ReIrGe ₂ Se ₆	a=b=6.44 Å	a=b=6.57 Å			
ReAlGe ₂ Se ₆	a=b=6.43 Å	a=b=6.52 Å			
ReBiGe ₂ Se ₆	a=b=6.37 Å	a=b=6.51 Å			
ReRhGe ₂ Se ₆	a=b=6.42 Å	a=b=6.55 Å			
ReSnGe ₂ S ₆	a=b=6.33 Å	a=b=6.45 Å			
TcIrGe ₂ S ₆	a=b=6.08 Å	a=b=6.23 Å			
TcIrGe ₂ Se ₆	a=b=6.41 Å	a=b=6.55 Å			

WIrGe ₂ S ₆	a=b=6.08 Å	a=b=6.29 Å
WAlGe ₂ Se ₆	a=b=6.47 Å	a=b=6.55 Å
WPtGe ₂ Te ₆	a=b=7.03 Å	a=b=7.09 Å

Table SIII. Ferroelectric transition barriers for the SL $M_I M_{II} Ge_2 X_6$ family.

Materials	Energy barrier (eV)	Materials	Energy barrier (eV)
ReIrGe ₂ S ₆	0.62	ReIrGe ₂ Se ₆	0.23
TcIrGe ₂ S ₆	0.49	ReRhGe ₂ Se ₆	0.19
ReAlGe ₂ Se ₆	0.07	WPtGe ₂ Te ₆	0.16
WIrGe ₂ S ₆	0.77	WAlGe ₂ Se ₆	0.22
ReSnGe ₂ Se ₆	0.20	ReBiGe ₂ Se ₆	0.24

Table SIV. Magnetic ground states of ferroelectric (FE) phase for 11 2D multiferroic materials.

Materials	FM (eV)	AFM1 (eV)	AFM2 (eV)
ReIrGe ₂ S ₆	-226.32145395	-226.14374067	-226.14374197
ReIrGe ₂ Se ₆	-222.62311261	-222.15396648	-222.14701290
ReAlGe ₂ Se ₆	-204.84004770	-204.45416126	-204.45347128
ReBiGe ₂ Se ₆	-204.84004770	-204.45416126	-204.45347128
ReRhGe ₂ Se ₆	-195.76309287	-195.51162751	-195.51162879
ReSnGe ₂ S ₆	-210.25680034	-210.12374933	-210.12349296
TcIrGe ₂ S ₆	-187.83463627	-187.57906846	-187.57906987
TcIrGe ₂ Se ₆	-203.81887192	-203.68401305	-203.68445755
WIrGe ₂ S ₆	-232.32182864	-232.13392289	-232.13392147
WAlGe ₂ Se ₆	-198.86190839	-198.63532164	-198.63591126
WPtGe ₂ Te ₆	-205.93188200	-205.54534612	-205.54534552

Table SV. Fractional corner charges of SL-ReBiGe₂S₆, SL-WIrGe₂S₆, SL-TcIrGe₂S₆, SL-TcIrGe₂S₆, SL-TcIrGe₂S₆, and SL-ReIrGe₂S₆.

2D multiferroic materials			Spin-up		Spin-down			
		$\#K_{2\uparrow}^3$	$\#K_{2\uparrow}^3 \qquad \#\Gamma_{2\uparrow}^3 \qquad Q_{c\uparrow}^{(3)}$		$\#K_{2\downarrow}^3$	$\#\Gamma^{3}_{2\downarrow}$	$Q^{(3)}_{c\downarrow}$	
B _o D _i C _o S	PE	14	14 15		-	-	-	
KeBiGe ₂ S ₆	FE	-	-	-	-	-	-	
WIrGe ₂ S ₆	PE	-	-	-	12	13	2e/3	
	FE	-	-	-	12	13	2e/3	
TcIrGe ₂ S ₆	PE	13	15	e/3	-	-	-	
	FE	13	15	e/3	13	14	2e/3	

TcIrGe ₂ Se ₆	PE	14	14 15			2e/3					-
	FE	14	15			2e/3	12		13		2e/3
ReIrGe ₂ S ₆	K ₁		K ₂		K ₁ '			K ₂ ?	,		Q _{conner}
Spin-up	-2		0			-	-				e/3
Spin-dn	-2		0			-	-			e/3	

Fig. S 1 Electronic band structures of PE and FE phases for ReBiGe₂S₆ and ReAlGe₂Se₆.

Fig. S 2 Electronic band structures of PE and FE phases for ReRhGe₂Se₆ and WPtGe₂Te₆.

Fig. S 3 Electronic band structures of PE and FE phases for WAlGe₂Se₆ and ReIrGe₂Se₆.

Fig. S 4 Electronic band structures of PE and FE phases for ReSnGe₂Se₆ and WIrGe₂S₆.

Fig. S 5 Electronic band structures of PE and FE phases for TcIrGe₂Se₆ and TcIrGe₂S₆.

Fig. S 6 (a) Electronic band structures of PE phases in spin-up channel for $TcIrGe_2S_6$. (b) Projected spectrum in spin-up channel for $TcIrGe_2S_6$. (c) The corresponding energy levels in spin-up channel for $TcIrGe_2S_6$. (d) The charge distribution of the finite-sized nanodisks.

Fig. S 7 (a) Electronic band structures of FE phases in spin-up channel for $TcIrGe_2S_6$. (b) Projected spectrum in spin-up channel for $TcIrGe_2S_6$. (c) The corresponding energy levels in spin-up channel for $TcIrGe_2S_6$. (d) The charge distribution of the finite-sized nanodisks.

Fig. S 8 (a) Electronic band structures of FE phases in spin-down channel for $TcIrGe_2S_6$. (b) Projected spectrum in spin-down channel for $TcIrGe_2S_6$. (c) The corresponding energy levels in spin-down channel for $TcIrGe_2S_6$. (d) The charge distribution of the finite-sized nanodisks.

Fig. S 9 (a) Electronic band structures of FE phases in spin-down channel for $TcIrGe_2Se_6$. (b) Projected spectrum in spin-down channel for $TcIrGe_2Se_6$. (c) The corresponding energy levels in spin-down channel for $TcIrGe_2S_6$. (d) The charge distribution of the finite-sized nanodisks.

Fig. S 10 (a) Electronic band structures of FE phases in spin-down channel for $WIrGe_2S_6$. (b) Projected spectrum in spin-down channel for $WIrGe_2S_6$. (c) The corresponding energy levels in spin-down channel for $WIrGe_2S_6$. (d) The charge distribution of the finite-sized nanodisks.

Fig. S 11 (a) Electronic band structures of PE phases in spin-down channel for $WIrGe_2S_6$. (b) Projected spectrum in spin-down channel for $WIrGe_2S_6$. (c) The corresponding energy levels in spin-down channel for $WIrGe_2S_6$. (d) The charge distribution of the finite-sized nanodisks.

Fig. S 12 (a) Electronic band structures of PE phases in spin-up channel for ReBiGe_2S_6 . (b) Projected spectrum in spin-up channel for ReBiGe_2S_6 . (c) The corresponding energy levels in spin-down channel for ReBiGe_2S_6 . (d) The charge distribution of the finite-sized nanodisks.

Fig. S 13 (a) Electronic band structures of PE phases in spin-up channel for ReIrGe₂S₆. (b)The corresponding energy levels in spin-up channel for ReIrGe₂S₆, and the charge distribution of the finite-sized nanodisks.

Fig. S 14. The band projections along the (100) direction for the $M_I M_{II} Ge_2 X_6$ family with Weyl points. Among them, the last two band projections are the edge states of PE and FE phases for ReSnGe₂S₆.