Synergistic Enhancement of Luminescence and Ferroelectricity Driven by (Z)-Clipping of a Tetraphenylethene

Authors: Sewon Lim⁺, Donghwan Kim⁺, Hee jung Kim, Hwandong Jang, Sienoh Park, and Eunkyoung Kim*

Affiliation:

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea

Index of supporting information

- S-1. Synthesis and characterization
- S-2. Thermal and electrochemical properties of TPC2-(Z)
- S-3. Optical and structural characterization of TPC2-(Z)
- S-4. Ferroelectric and piezoelectric characterization of TPC2-(Z)
- S-5. Supporting tables (table S1 \sim table S5)

References

S-1. Synthesis and characterization

Figure S1. (a) ¹H NMR spectrum of TPE2PhCHO-(Z) and comparison with previously reported result.

Figure S2. Synthesis schemes of Clip and TPC2-(Z)

Figure S3. (a) 1 H NMR and (b) 13 C NMR spectra of TPC2-(Z) on 400 MHz NMR spectrometer

Figure S4. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF/TOF) mass spectra of TPC2-(Z)

Figure S5. a) ¹H NMR Comparison of TPC2-(Z) and TPC2-(E/Z). b) 2D-NOESY ¹H NMR of TPC2-(Z) and TPC2-(E/Z) between $6.9\sim7.9$ ppm on 400 MHz NMR spectrometer. c) MestReNova ¹H NMR prediction simulation of TPC2-(Z).

S-2. Thermal and electrochemical properties of TPC2-(Z)

Figure S6. Thermalgravimetric analysis (TGA) measurements of TPC2-(Z)

Figure S7. Differential scanning calorimetry (DSC) measurements of the crystalline powder under nitrogen at 10K min⁻¹ of TPC2-(Z).

Figure S8. Cyclic voltammograms (CV) of TPC2-(Z) in chloroform with 0.1 M tetrabutylammonium hexafluorophosphate as electrolyte, a platinum disk as working electrode, a platinum wire as counter electrode and an Ag/AgCl reference electrode. The scan rate was 100 mV/s.

S-3. Optical and structural characterization of TPC2-(Z)

Figure S9. Normalized PL spectra of TPC2-(Z) with different water fractions (0% (black dotted), 10% (red), 30% (blue), 50% (magenta), 70% (green), 80% (navy), 90% (purple) at excitation wavelength 330 nm; at concentration 10⁻⁵ M).

Figure S10. TEM images of TPC2-(Z) under various magnifications.

Figure S11. TEM and SAD (selected area diffraction) mode images of TPC2-(Z) in DW/THF ($f_w = 90$ %). Magnified regions are encircled red. The inset in the lower most is the magnification of red encircled region.

[1.ra	aw] 10								Peak Search Report
SCA									
PE/	AK: 31(pts)/F	Parabolic F	ilter. Thre	eshold=3	.0. Cutoff=	0.1%. B	G=3/1.0. F	· Peak-Top	p=Summit
NO			27(0)-0	O(dog))	Novelopati	to Corr	puto d Si		1 54050Å (Cu/K alpha1)
NO		/ - Counts,	21(0)-0	.0(ueg),			ipute u-Sp		
#	2-Theta	d(A)	Height	H%	Area	A%	FWHM	XS(A)	
1	6.500	13.5879	1507	27.8	15828	8.5	0.179	/2/	
2	7.142	12.3672	306	5.7	4744	2.5	0.263	391	
3	7.981	11.0692	475	8.8	3913	2.1	0.140	>1000	
4	8.779	10.0640	448	8.3	5075	2.7	0.192	636	
5	9.580	9.2247	1662	30.7	27916	14.9	0.285	351	
0	12.400	7.4290	012	90.7	25020	39.4	0.240	449	
/	12.499	6.5244	912	10.9	25039	13.4	0.407	191	
0	13.541	0.0341	1034	30.2	30910	20.8	0.405	220	
9	14.541	6.0800	854	15.8	30858	16.5	0.014	141	
10	16.759	5.2857	2437	45.0	50369	26.9	0.351	270	
11	17.479	5.0696	3111	57.5	80606	43.1	0.440	206	
12	18.161	4.8809	2592	47.9	112901	60.3	0.740	115	
13	19.220	4.6142	5355	98.9	181661	97.1	0.577	152	
14	20.060	4.4229	2108	38.9	48958	26.2	0.395	235	
15	21.100	4.2070	5412	100.0	18/100	100.0	0.588	149	
16	21.919	4.0516	2606	48.2	72942	39.0	0.476	190	
17	22.719	3.9108	1828	33.8	53095	28.4	0.494	182	
18	23.400	3.7986	1358	25.1	50310	26.9	0.630	139	
19	24.082	3.6925	827	15.3	27718	14.8	0.570	155	
20	24.779	3.5902	505	9.3	14499	1.1	0.488	185	
21	25.361	3.5090	689	12.7	12283	6.6	0.303	331	
22	26.105	3.4107	265	4.9	4047	2.2	0.259	409	
23	27.159	3.2807	216	4.0	2718	1.5	0.214	545	
24	27.958	3.1887	539	10.0	15829	8.5	0.500	181	
25	28.459	3.1338	313	5.8	9460	5.1	0.513	1/6	
26	29.924	2.9836	196	3.6	3372	1.8	0.292	351	
27	30.853	2.8958	110	2.0	799	0.4	0.124	>1000	
28	31.735	2.8173	1/6	3.3	2669	1.4	0.258	418	
29	34.324	2.6105	113	2.1	11/3	0.6	0.176	/81	
30	34.503	2.5974	150	2.8	1278	0.7	0.145	>1000	
31	34.981	2.5630	139	2.6	/71	0.4	0.094	>1000	
32	36.280	2.4741	84	1.5	463	0.2	0.094	>1000	
33	41.474	2.1755	83	1.5	442	0.2	0.090	>1000	
34	42.391	2.1305	115	2.1	1400	0.7	0.207	601	
35	47.239	1.9226	67	1.2	916	0.5	0.232	512	
36	47.523	1.9117	90	1.7	1724	0.9	0.326	321	
31	48.345	1.8811	51	0.9	332	0.2	0.111	>1000	
38	54.017	1.6962	63	1.2	507	0.3	0.138	>1000	
39	59.819	1.5448	63	1.2	309	0.2	0.083	>1000	
40	62.060	1.4943	53	1.0	501	0.3	0.160	>1000	
41	76.763	1.2406	61	1.1	301	0.2	0.084	>1000	
42	83.896	1.1524	44	0.8	459	0.2	0.176	>1000	
	1 profest	m		ᡟᠬᢇᢩᠯ᠆᠆ᢩᢘ᠇				<u></u>	

Figure S12. Powder XRD result of TPC2-(Z) peak analysis.

Figure S13. Energy minimized optimized structures of TPC2-(Z) and dipole moments having a) TPE-TPE interaction, b) clip-clip (DOS) interaction, c) both interactions and d) a combined structure on the interaction between molecules via TPE aggregation (olive) and DOS unit clipping (purple), based on DFT calculations.

Figure S14. Electroluminescence spectra of TPC2-(Z) at different (host : guest) molar ratio compositions at maximum luminescence under a VCL driving measurement. Detailed LEC performances are listed in Table S3.

Figure S15. Peak deconvolution of EL spectra Figure 3b, 11.1V (magenta – original peak, green and red – deconvoluted).

Figure S16. a) Polarization – electric field loops of TPC2-(Z) thin film and b) result of annealed film. c) Remnant polarization (P_r) with varying V_{max} value.

Figure S17. a) Structure of PENG. b) The circuit diagram of piezoelectrically operated EL device, and c) the curve of the storage voltage by physical bending of PENG at a frequency of 1 Hz.

Determination of longitudinal piezoelectric coefficient (d_{33}^*)

Longitudinal piezoelectric coefficient (d_{33}^*). was obtained from equation S1 and S2,¹

Equation (S1):

$$Piezoelectric Amplitude [m] = \frac{3 \cdot PFM \text{ Amplitude } [V]}{\text{Sensitivity } [V/m] \cdot \text{Gain Correction Factor}}$$

Equation (S2):

$$d_{33}^{*}\,[\mathrm{m/V}] = rac{\mathrm{Piezoelectric Amplitude}\,[\mathrm{m}]}{\mathrm{Tip \, Bias}\,[\mathrm{V}]}$$

where PFM amplitude is measured in voltages (V) from the lock-in amplifier. Sensitivity (V/m), the calibration factor that converts voltage signals to displacement was determined from the PFM amplitude data. Gain correction factor, an instrument-dependent amplification factor, which is related to signal to noise ratio during PFM experiments. Tip bias (V) is the AC voltage applied during PFM measurements. Using these values, the PFM amplitude data in mV unit was converted into pm unit (figure 4c), which showed four linear regions. The slopes for the linear region corresponds to the longitudinal piezoelectric coefficient as reported before.^{2, 3, 4} From the PFM amplitude data in the figure 4c, we obtained four distinct slopes in the linear regions, which were averaged to yield $d_{33} = -23.8 \text{ pm V}^{-1}$.

XRD			Assignment	DFT	DFT (optimized)		
20 [°]	d [nm]	Intensity [counts]		d [nm]	d [nm]	Interaction ^{a)}	
6.50	13.59	1507	d ₁	13.80	13.84	Clip-Clip	C(πB)-C(decyl)
7.98	11.07	475	d ₂	11.58	11.55, 11.02	Length of Clip unit, TPE-TPE	C(decyl)-C(decyl), C(π B)-C(π T)
9.58	9.22	1662	d ₃	9.58	10.28	TPE-TPE	ethene-ethene
11.90	7.43	5232	d_4	7.29	7.82	TPE-TPE	$C(\pi B)$ - $C(\pi T)$
12.50	7.08	912	d ₅	7.07	6.39	Clip-Clip	Self-assembly (C-C)
13.54	6.53	1634	d_6	6.65	6.55	Clip-Clip	Self-assembly (C-C)
1676	5 20	2427	L	5.38	-	TPE-TPE	$C(\pi B)$ - $C(\pi T)$
10.70	5.29	2437	d ₇	5.31	5.41	Clip-Clip	Self-assembly (C-C)
17.48	5.07	3111	d ₈	5.06	5.02	TPE-TPE	$C(\pi B)$ - $C(\pi T)$
19.22	4.61	5355	d ₉	4.40	4.81	TPE-TPE	$C(\pi B)$ - $C(\pi T)$
20.06	4.42	2108	d ₉	4.14	4.27	TPE-TPE	$C(\pi B)$ - $C(\pi T)$
			d ₉	4.26	4.37	TPE-TPE	$C(\pi T)$ - $C(\pi T)$
21.92	4.05	2606	d ₁₀	4.05	4.08	TPE-TPE	$C(\pi B)$ - $C(\pi T)$
22.72	3.91	1828	d ₁₁	3.85	3.89	TPE-TPE	$C(\pi B)$ - $C(\pi T)$
23.40	3.80	1358	d ₁₂	3.89	-	TPE-TPE	$C(\pi T)$ - $C(\pi T)$
25.36	3.51	689	d ₁₃	3.66	-	TPE-TPE	$C(\pi B)$ - $C(\pi T)$
27.16	3.28	216	d ₁₄	3.39	3.65	TPE-TPE	$C(\pi T)$ - $H(T)$
29.92	2.98	196	d ₁₄	3.06	3.37	TPE-TPE	$C(\pi T)$ -H(T)
30.85	2.90	110	d ₁₄	3.00	3.04	TPE-TPE	$C(\pi B)$ -H(T)
31.74	2.82	176	d ₁₄	2.85	2.94	TPE-TPE	$C(\pi B)$ - $H(T)$
			d ₂₀	19.31	18.53	Clip-Clip	$C(\pi B)$ - $C(\pi B)$
			d ₂₁	64.71	64.18	TPE-TPE	$C(\pi T)$ - $C(\pi T)$
			d ₂₂	58.14	57.00	TPE-TPE	$C(\pi T)$ - $C(\pi T)$
			d ₂₃	12.62	12.98	TPE-TPE	$C(\pi T)$ - $C(\pi T)$

Table	S1	d-spacing	distances	of TPC2-	(\mathbf{Z})	h h	v various	experimental	methods
I aDIC	DI .	u-spacing	uistances	01 11 02-		10	y various	слрегинста	memous.

d ₂₄	14.77	13.44	TPE-TPE	$C(\pi T)$ - $C(\pi T)$
d ₂₅	21.59	23.19	TPE-TPE	С(πВ)-С(πВ)

Organic ferroelectric material	P _r [μC cm ⁻²]	d [*] ₃₃ [pm V ⁻¹]	d ₃₃ [pC N ⁻¹]
TPC2-(Z)	2.54	-23.8	
TPC1 ¹	1.93	-9.3	-8.1±1.9
TPC4 ¹	2.27	-17.4	-15.5±2.4
BTA ²	6	20	
4,5-dibromo-2-methyl-1H-imidazole ⁵	-	2.6	
croconic acid ^{6, 7}	~30	7.6	
3-hydroxy-1 <i>H</i> -phenalen-1-one ^{6, 7}	5.6	3.1	
Phenylmalonaldehyde ^{6, 7}	9	4.3	

 Table S2. Comparison of organic ferroelectric materials.

Piezoelectric amplitude $[m] = 3 \cdot PFM$ amplitude [V] / sensitivity [V/m] / gain correction factor $Piezoelectric coefficient <math>(d_{33}) [m/V] =$ piezoelectric amplitude [m] / tip bias [V]

	СВР	TPC2-(Z)	Molar
Trialay	(µmol)	(µmol)	ratio ^{b)}
1	18.00	0.83	21.7 : 1
2	16.78	1.17	14.3 : 1
3	15.77	1.45	10.9 : 1
4	14.45	1.82	7.9 : 1
5	14.01	1.95	7.2 : 1
6	13.29	2.15	6.2 : 1
7	12.63	2.34	5.4 : 1

Table S3. Compositions of LEC fabrication trials.

a) The amount of THABF₄ electrolyte is fixed to 2.36 mg

b) Total weight of CBP and TPC2Z is maintained to 10.14 mg

(Host : Guest) molar ratio	V _{on} [V]	Lv _{max} [Cd·m ⁻²]	V _{max} [V]	CE [cd·A ⁻¹]	J [mA∙cm ⁻¹]	λ _{EL} [nm]	Reference
11.9 : 1 (TPC2-(E/Z))	7.5	445.4	10.4	0.23	205.7	483	1
21.7 : 1	14.1	7.6	14.8	0.0045	169.0	495	-
14.3 : 1	14.1	15.5	15.2	0.012	126.5	493	-
10.9 : 1	14.6	21.2	17.1	0.030	70.1	491	-
7.9 : 1	9.9	627.1	11.2	0.33	192.4	487	-
7.2 : 1	11.9	709.1	12.2	0.26	269.9	480	-
6.2 : 1	11.7	526.3	12.2	0.35	148.8	482	-
5.4 : 1	11.9	723.8	12.2	0.34	211.4	487	-

Table S4. List of TPC2-(Z) LEC performances in VCL mode.

(Host : Guest) molar ratio	V _{on} [V]	Lv _{max} [cd·m ⁻²]	V _{max} [V]	CE [cd·A ⁻¹]	J [mA∙cm ⁻¹]	λ _{EL} [nm]	Reference
11.9 : 1 (TPC2-(E/Z))	4.3	685.8	7.3	-	1.9	483	1
21.7 : 1	6.3	14.3	9.3	-	20.0	489	-
14.3 : 1	8.7	22.0	9.9	-	72.2	491	-
10.9 : 1	8.5	75.9	9.3	-	24.4	492	-
7.9 : 1	3.9	890.7	7.4	-	120	486	-
7.2 : 1	6.2	337.9	10.1	-	236.7	480	-
6.2 : 1	7.4	1007.0	9.1	-	248.9	486	-
5.4 : 1	6.3	458.5	6.3	-	140	481	-

 Table S5. List of TPC2-(Z) LEC performances in PCL mode.

Reference

- D. Kim, H. T. T. Thuy, B. Kim, Y. Auh, M. Rémond, K. K. Leong, T. Liang, J. Kim and E. Kim, *Advanced Functional Materials*, 2023, **33**, 2208157.
- I. Urbanaviciute, X. Meng, M. Biler, Y. Wei, T. D. Cornelissen, S. Bhattacharjee, M. Linares and M. Kemerink, *Materials Horizons*, 2019, 6, 1688-1698.
- R. Haldar, A. Kumar, D. Mandal and M. Shanmugam, *Materials Horizons*, 2024, 11, 454-459.
- 4. A. Jalalian, A. M. Grishin, X. L. Wang, Z. X. Cheng and S. X. Dou, *Applied Physics Letters*, 2014, **104**.
- M. Owczarek, K. A. Hujsak, D. P. Ferris, A. Prokofjevs, I. Majerz, P. Szklarz, H. Zhang, A. A. Sarjeant, C. L. Stern, R. Jakubas, S. Hong, V. P. Dravid and J. F. Stoddart, *Nature Communications*, 2016, 7, 13108.
- 6. S. Horiuchi, J. y. Tsutsumi, K. Kobayashi, R. Kumai and S. Ishibashi, *Journal of Materials Chemistry C*, 2018, **6**, 4714-4719.
- S. Horiuchi, K. Kobayashi, R. Kumai and S. Ishibashi, *Nature Communications*, 2017, 8, 14426.