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Figure S1. Retention time measurement of the resistive switch. A 500 mV pulse is applied to the device to bring 
the device to the low resistance state. After approximately one second, the resistance of the device rapidly drops. 
The measurement setup then reduces the applied voltage to ensure that the set compliance current of 10 µA is 
not exceeded. After 4.5 seconds, the voltage is reduced to 10 mV to measure the evolution of the resistance over 
time. The inset shows a zoom-in on the region in the dotted rectangle, corresponding to the first hundreds of 
milliseconds after the potential is reduced to the 10 mV read-out voltage. 
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Figure S2. Analysis of retention times of the resistive switch. (a) Histogram of 40 retention time measurements. 
(b) Example of a measurement where the retention time was less than the integration time of the measurement 
setup, so only a discharge of the parasitic capacitance is measured. Although the exact retention time of these 
measurements could not be determined, they were added to the first bin of the histogram to still give an accurate 
representation. 

Figure S2a gives a histogram of retention times based on 40 measurements. The device 

is set to the high-conductive state by applying 500 mV, with the compliance current set 

to 10 µA. The retention time was measured by applying 1 mV of constant bias. In several 

cases, the device reset to the low-conductance state within the integration time of the 

measurement setup (about 25 ms). An example of such a measurement is given in Figure 

S2b. These measurements were binned in the first bin (between 0 and 0.05 s) of the 

histogram in Figure S2a. The retention time was under 500 ms for all cases measured. 
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Figure S3. Histogram of the switching time for a switching event of the halide perovskite memristive device under 
an applied voltage of 150 (a), 200 (b), and 250 mV (c), with a fit based on a Poisson distribution. The means 
obtained from the fits are given in their respective figures. (d) A fit of the means obtained in the previous 
subfigures to the listed exponential function to extract the fitting parameters. 

The probability of a resistance change of the memristive device upon the application of 

a voltage follows a Poisson distribution, as is evident from Figure S3a, b, and c. The 

formation of conductive filaments in memristive devices requires hopping of ions by a 

thermally activated process, which introduces this stochasticity. Random fluctuations 

are not averaged out according to the law of large numbers due to the small amount of 

ions needed to form the nanoscale filament. Previous work has described this Poisson 

behavior extensively and showed that the mean switching time depends exponentially 

on the applied bias according to 𝜏(𝑉) = 	 𝜏!𝑒"#/#!, where 𝜏 is the mean switching time, 

and 𝜏! and 𝑉! are fitting parameters.1 Figure S3d shows the same trend for our device, 

indicating that the same process of stochastic conductive filament formation underlies 

the operation of our device. Previous research on devices with similar electrodes and a 



 4 

halide perovskite active layer has shown that these conductive filaments consist of 

iodide vacancies2 or silver.3 

 

 

Figure S4. Resistive switching of a device without the halide perovskite layer. Resistive switching also occurs 
through the SiO2 spacer, albeit at higher voltages than for the device with a halide perovskite layer. 
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Figure S5. Fit of the firing pulses in Figure 2c with charging and discharging of a capacitor. (a) Fits of the charging 
(firing) and discharging (resetting) of the second firing pulse. (b) Extracted resistances of the charging and 
discharging of each of the firing pulses in Figure 2c. Error bars representing one standard deviation of the 
obtained resistance from the fit are included, but are smaller than the dots of the markers in the figure. (c) The 
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circuit of the neuron with the 10 MΩ probes of the oscilloscope connected. The probes offer an alternative path 
for the capacitor to discharge.  

 
Figure S6. Spiking neuron measurements repeated on a substrate without the halide perovskite layer. No spiking 
is measured using the same parameters as for the spiking neuron in the main text. 
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Figure S7. Four different measurements of the spiking neuron. In the measurements in (a), (b), (c), and (d) the 
same voltage profile, with 5 ms pulses of 750 mV, was applied to the neuron with a 33 Hz frequency. In all 
cases, this resulted in stochastic spiking by the neuron.  

 
Figure S8. (a) Histogram of the time under bias before firing of the neuron based on the measurements in Figure 
S7. Spiking by the neuron was defined as the moment when the capacitor voltage exceeds 200 mV. The mean of 
the distribution is 6.9 ms. (b) The same histogram of spiking by the neuron compiled from simulated data to 
validate the model. We obtain the same mean of 6.9 ms of applied bias before spiking by the neuron. 
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Supplementary Note 1. Modeling of stochas:c and 

determinis:c neurons 

 

The simulated data in Figure 3 was obtained with experimentally determined resistances 

and capacitance. For the stochastic neurons, a switching time was drawn from a Poisson 

distribution with the experimentally determined mean of 6.9 ms from Figure S8, using a 

random number generator. Voltage pulses are applied in the simulation, which causes a 

voltage buildup on the capacitor with an RC constant of 300	pF	 × 	1	GΩ = 0.3	s. The time 

under bias is then tracked until the switching time is reached. At this point, the RC 

constant decreases significantly to 300	pF	 × 	3	MΩ = 0.9	ms due to the resistance 

change of the resistive switch. After the voltage is removed, the capacitor discharges 

through a 10 MΩ resistor and a new switching time is drawn from the Poisson 

distribution. The same procedure is followed for deterministic neurons, but with a 

switching time always set to 6.9 ms. For validation of the model, we simulated the spiking 

of a neuron using the same input voltage profile as for the measurements in Figure S7, 

but over a longer period of 500 seconds, constituting 16,666 applied voltage pulses. A 

histogram of the time under bias before spiking by the neuron based on the simulation is 

given in Figure S8b. The mean obtained from the simulation of 6.9 ms agrees with the 

experimentally obtained mean of 6.9 ms.  

To determine the representation error of the neuron populations in Figure 3d, the 

population code of the neuron populations, i.e., the cumulative sum of spikes for each 

applied pulse, is compared to the ideal population code. For stochastic neurons, the 

chance of the neurons outputting a spike is 𝑃(5	𝑚𝑠) = 	1 −	𝑒"
"	$%
&.(	$% ≈ 0.52 for each 5 ms 

input voltage pulse. In the ideal case, the mean number of spikes per neuron in a 

population is, therefore, equal to 0.52 multiplied by the number of applied pulses. Figure 

S9a compares the ideal mean number of spikes with that of a simulation of stochastic 

neuron populations of different sizes. Because of the non-zero chance of spiking by the 

stochastic neuron for each applied pulse, the population can capture all applied voltage 

pulses. For larger population sizes, the mean of the pulses approaches that of the ideal 

case. The deterministic neurons always spike after 6.9 ms of bias, or every second pulse. 
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Because of the deterministic nature of the neuron, additional spikes are never output by 

deterministic populations for uneven numbers of applied pulses, as illustrated by Figure 

S9b.  

 

 
Figure S9. The mean number of spikes per neuron of the stochastic and deterministic neuron populations, 
compared to their respective ideal mean number of spikes. (a) The mean number of spikes per number of 
stochastic populations of different sizes. Owing to the stochastic nature of the spiking, the average number of 
spikes converges to the ideal case for all applied pulses as the population size increases. (b) The mean number of 
spikes of deterministic populations. By definition, the mean does not change for different population sizes. The 
mean does not increase for uneven number pulses but matches perfectly with the ideal mean for even numbers 
of applied pulses.  

To obtain the representation error from the simulations, we take the Euclidian norm of 

the difference between the ideal and the simulated mean numbers of spikes for each 

population, 𝐸 = 	=∑ (µ%,'%()*+,-. − µ%,%.-+*)/0!
%10 , where i refers to the applied pulse 

number and µ is the mean number of spikes per neuron. To obtain the results shown in 

Figure 3d, we repeated the simulations 1000 times for neuron populations of 1 and up to 

100 neurons. The average representation error is shown in the figure. 
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Figure S10. Stimulation of the neuron with 750 mV pulses with pulse durations of 7.5 ms in (a), which leads to 
firing with every applied pulse and with a duration of 2 ms in (b), which leads to no firing of the neuron.  
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Supplementary Note 2. Scaling of the spiking neuron 

 

There are two main limitations of further scaling of the neuron. First, the RC constant 

should remain high enough to prevent excessive charge buildup on the capacitor during 

the stimulation phase. To estimate scaling limitations, we set a limit of 100 mV of voltage 

buildup during stimulation of the neuron, while the resistive switch is still in the OFF-

state. A voltage buildup of 100 mV is still easy to distinguish from a firing event where the 

voltage rises to several hundreds of millivolts, as in the measurements in Figure S7.  

Assuming the same input pulses of 750 mV and 5 ms in length as in Figure 2c, the RC 

constant should then be at least 𝑅𝐶 = 	− ,

2340" )(+)
)%-../0

5
=	− 6	×0!12'

2390"3!!	$)
4"!	$):

	≈ 35	𝑚𝑠. Further 

downscaling of the resistive switch should linearly increase its low-conductance state 

resistance. Balancing this resistance with the series capacitance to satisfy the 

constraint on the RC constant allows for easy scaling of the neuron.  

Even if the low-conductance state resistance is not reduced further as the resistive 

switch is scaled, due to a parasitic resistance in the circuit, for example, the capacitance 

can still be reduced by approximately an order of magnitude, to 𝐶 = 	 .!<6	'
0!(=

	= 35	𝑝𝐹, 

assuming an OFF-state resistance of 1 GΩ extracted from the I-V curve in Figure 1b. 

Assuming that the reduction in the capacitance means that the capacitor is now always 

fully charged with a firing event, this would reduce the energy consumption of the neuron 

to 𝐸 = 	 0
/
	× 𝐶 × 𝑉/ = 0

/
	× 35 × 10"0/𝐹 × (0.75	𝑉)/ ≈ 9.8	𝑝𝐽. Even in this upper limit, the 

energy consumption of the neuron would be close to that of the most energy-efficient 

silicon neurons.4  

A second limitation is that the amount of charge on the capacitor should be large enough 

to aid the resetting of the resistive switch after firing. From Figure S5a we see that the 

device is in the high resistive state right after the voltage is turned off. Thus, the switching 

time is <1 ms. The neuron would work in a similar way with a switching time 2-3 orders of 

magnitude slower, which means that a capacitance 2-3 orders of magnitude smaller 

would suffice, in the hundreds of femtofarad regime. Common CMOS technology utilizes 
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architectures that can fabricate capacitors on this scale with very small device 

footprint.5 

 

 

 
Figure S11. (a) Figure 2c, (b) Figure 3a, (c) Figure 3b and (d) Figure 3c before smoothing and removal of the 50 
Hz signal of the AC mains. Comparing these figures with the figures in the main text shows that the noise is 
removed without distorting the measured signal.  
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