Supplemental Information

Stretchable Wrinkle-Structured Liquid-Metal Sandwich Film Enables Strain-Insensitive Electromagnetic Shielding and Joule Heating

Yiming Ren,^{a b} Jiali Chen,^{b c} Jiaheng Yao,^{b c} Liqiang Shang,^{b c} Wenge Zheng,^{b c} Bin Shen^{* b c}

^aSchool of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang Province, 315211, China
^bNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang province, 315201, China
^cUniversity of Chinese Academy of Sciences, Beijing, 100049, China
E-mail: <u>shenbin@nimte.ac.cn</u>

Figure S1. Resistance change of LEW films in the a) X direction and b) Y direction.

Figure S2. EMI SE curves and R-A coefficients of $LEW_0 \perp E$, LEW_{50} -X/Y $\perp E$, LEW_{100} -X/Y $\perp E$ and LEW_{150} -X/Y $\perp E$.

Figure S3. EMI SE curves and R-A coefficients of LEW₀/|E, LEW₅₀-X/Y/|E, LEW₁₀₀-X/Y/|E and LEW₁₅₀-X/Y/|E.

Figure S4. R-A coefficients of (a) LEW_{150} - $X \perp E$. (b) LEW_{150} - $Y \perp E$ and (c) $LEW_0 \perp E$ during cycles.

Figure S5. (a) T_s - U^2 curves of LEW_{150} -X. (b) Multiple heating-cooling cycles of LEW_{150} -X at 0.8 V. Temperature-time curves of (c) LEW_{150} -Y and (d) LEW_0 under different strains.

Figure S6. Digital photograph of homemade stretching device.

Figure S7. Digital photograph of EMI SE testing process during stretching.

Materials	EMI	Stretch-	Normalized		
	SE (dB)	ability	SE	Kef.	
LM/Ni/Ecoflex film	76-45	0-300%	100-59%	1	
LM/Ecoflex foam	57-85	0-400%	100-149%	2	
PDMS/LM textile	72.6-52.5	0-50%	100-72%	3	
TPU/PDA/AgNPs/LM textile	112.8-85.9	0-60%	100-76%	4	
LM/CNT/Gelatin/PAM hydrogel	37.4-17	0-500%	211-96%	5	
LM/Ag/SEBS textile	75.3-31.7	0-300%	100-42%	6	
LM/Fe/Ecoflex filmLE	20.6-80.7	0-400%	100-392%	7	
LM/SPU	39.6-72	0-300%	100-182%	8	
GnP/PU film	21-41	0-130%	100-195%	9	
TPU/MXene wrinkled fabric	31.4-21	0-70%	100-67%	10	
Cu/rubber conductive microcoils	35.7-10.7	0-75%	136-41%	11	
XNBR/Li- TFSI/PEDOT/PSS film	46-28	0-100%	100-61%	12	
SDEP/LM foam	66.7-26.1	0-500%	100-39%	13	
DSWCNT/Latex film⊥E	36-20.1	0-200%	100-56%	14	
DSWCNT/Latex film E	28.3-41.1	0-200%	100-145%	14	
LM/TPU foam E	50.6-57.9	0-200%	100-114%	15	

 Table S1. EMI SE and stretchability of various stretchable EMI shields.

LEW ₁₅₀ -X E	35.3-40.7	0-250%	100-115%	This work
LEW ₁₅₀ -X⊥E	39.3-41.1	0-250%	97-101.2%	This work
3D core-shell LM/PDMS	50-43.5	0-50%	100-87%	22
LM/PDMS lattice	36.8-37.3	0-100%	99.4-100%	21
3D LM/Ecoflex E	41.5-81.6	0-400%	100-197%	20
LM/PDMS film E	43.4-44.9	0-75%	97-100%	19
APU/CNT foam	35.6-31.8	0-30%	102-91%	18
LM/PDMS mesh⊥E	16.7-10.2	0-60%	100-63%	17
LM/PDMS mesh E	16.7-24.2	0-60%	100-145%	17
LM/TPU film E	58.1-63.1	0-400%	100-108%	16

 Table S2. Steady-state temperature and stretchability of various stretchable electric heaters.

Materials	Temperature	Stretch-	Normalized	Def
	(°C)	ability	temperature	Kei.
TPU/PDA/AgNPs/LM	(5 2 52 1	0.600/	100 700/	4
textile	65.2-52.1	0-60%	100-79%	4
TPU/MXene wrinkled	84-73	0-50%	100-87%	10
fabric				
DSWCNT/Latex film	70-60	0-100%	100-86%	14
LM/TPU foam	62-53.9	0-200%	100-87	15
LM/TPU film	60-47	0-100%	100-78%	16
LM/PDMS mesh	91.1-94.9	0-60%	100-104%	17
APU/CNT foam	81-65	0-30%	100-80%	18
LM/PDMS film	100-95	0-75%	100-95%	19

LEW ₁₅₀ -Y	89.4-75.4	0-250%	100-84%	This work
LEW ₁₅₀ -X	85.1-72.8	0-250%	100-86%	This work
rubber/graphene	163-115.2	0-100%	100-71%	31
network	33-40	0-30%	100-72%	50
AgNW percolation	55 40	0.209/	100 729/	20
AgNW/SBS meshes	36.5-32.7	0-50%	100-90%	29
LM@CIP WED	41.4-43.4	0-50%	100-105%	28
based aerogel film	42.2-40	0-75%	100-93%	21
semiconducting polymer-	42 2 40	0.759/	100 05%	27
Ag/MWCNTs/rubber film	35-32	0-40%	100-91%	26
nanocomposite	50-30	0-100%	100-00%	25
Graphene/Ecoflex	50.20	0 1000/	100 600/	25
nanocomposite	160-30	0-20070	100-1970	24
S-CNTs/Elastomer	160 30	0 200%	100 10%	24
PDMS/AgNW film	85-74	0-100%	100-87%	23

Reference

- M. Zhang, P. Zhang, Q. Wang, L. Li, S. Dong, J. Liu and W. Rao, J. Mater. Chem. C, 2019, 7, 10331-10337.
- D. Yu, Y. Liao, Y. Song, S. Wang, H. Wan, Y. Zeng, T. Yin, W. Yang and Z. He, *Adv. Sci.*, 2020, 7, 2000177.
- L. Jia, X. Jia, W. Sun, Y. Zhang, L. Xu, D. Yan, H. Su and Z. Li, ACS Appl. Mater. Interfaces, 2020, 12, 53230-53238.
- 4. L. Qiu, J. Li, Q. Yu, W. Han, L. Zhao, L. Yi and M. Yang, *Chem. Eng. J.*, 2024, **481**, 148504.
- 5. H. Guo, Y. Shi, F. Pan, S. Zheng, X. Chai, Y. Yang, H. Jiang, X. Wang, L. Li, Z. Xiu, J. Wang and W. Lu, *Nano Energy*, 2023, **114**, 108678.
- J. Dong, X. Tang, Y. Peng, C. Fan, L. Li, C. Zhang, F. Lai, G. He, P. Ma, Z. Wang, Q. Wei, X. Yan, H. Qian, Y. Huang and T. Liu, *Nano Energy*, 2023, 108, 108194.
- R. Zhu, Z. Li, G. Deng, Y. Yu, J. Shui, R. Yu, C. Pan and X. Liu, *Nano Energy*, 2022, 92, 106700.
- D. Mani, M. C. Vu, S. Anand, J. B. Kim, T. H. Jeong, I. H. Kim, B. K. Seo, M. A. Islam and S. R. Kim, *Compos. Commun.*, 2023, 44, 101735.
- D. Mani, M. C. Vu, C. S. Lim, J. B. Kim, T. H. Jeong, H. J. Kim, M. A. Islam, J. H. Lim, K. M. Kim and S. R. Kim, *Carbon*, 2023, 201, 568-576.
- J. Dong, S. Luo, S. Ning, G. Yang, D. Pan, Y. Ji, Y. Feng, F. Su and C. Liu, ACS Appl. Mater. Interfaces, 2021, 13, 60478-60488.
- C. Liu, J. Cai, P. Dang, X. Li and D. Zhang, ACS Appl. Mater. Interfaces, 2020, 12, 12101-12108.
- 12. X. Jiang, Z. Hu, S. Xu, B. Hu, B. Liu, Q. Li, Y. Song and Q. Zheng, *Chem. Eng. J.*, 2024, **489**, 151252.
- J. Feng, J. Wang, W. Liu, S. Fan, D. Guo, M. Tan, B. Li, K. Guo and S. Zhang, ACS Appl. Polym. Mater., 2024, 6, 4103-4113.
- X. Gong, T. Hu, Y. Zhang, Y. Zeng, Y. Zhang, Z. Jiang, Y. Tan, Y. Zou, J. Wang, J. Dai and Z. Chu, *Nano-Micro Lett.*, 2024, 16, 243.
- 15. X. Zhang, J. Chen, X. Chen, J. Yao, W. Zheng and B. Shen, *Chem. Eng. J.*, 2024, **493**, 152478.
- 16. J. Chen, X. Chen, Y. Su, B. Shen and W. Zheng, *Mater. Horiz.*, 2024, 11, 6381-6390.
- Z. Xu, J. Chen, G. Wang, Y. Zhao, B. Shen and W. Zheng, *Compos. Sci. Technol.*, 2024, 249, 110512.
- 18. Z. Xu, J. Chen, B. Shen, Y. Zhao and W. Zheng, ACS Mater. Lett., 2023, 5, 421-428.
- 19. G. Wang, J. Chen, W. Zheng and B. Shen, *Chem. Eng. J.*, 2024, **488**, 151052.

- B. Yao, W. Hong, T. Chen, Z. Han, X. Xu, R. Hu, J. Hao, C. Li, H. Li, S. E. Perini, M. T. Lanagan, S. Zhang, Q. Wang and H. Wang, *Adv. Mater.*, 2020, **32**, 1907499.
- 21. Z. Wang, X. Xia, M. Zhu, X. Zhang, R. Liu, J. Ren, J. Yang, M. Li, J. Jiang and Y. Liu, *Adv. Funct. Mater.*, 2022, **32**, 2108336.
- 22. Z. Wang, J. Ren, R. Liu, X. Sun, D. Huang, W. Xu, J. Jiang, K. Ma and Y. Liu, *Compos. A Appl. Sci. Manuf.*, 2020, **136**, 105957.
- 23. Y. Feng, J. Song, G. Han, B. Zhou, C. Liu and C. Shen, *Small Methods*, 2023, 7, 2201490.
- 24. D. Ren, C. Zhao, S. Zhang, K. Zhang and F. Huang, Adv. Funct. Mater., 2023, 33, 2300517.
- D. Zhang, S. Xu, X. Zhao, W. Qian, C. R. Bowen and Y. Yang, *Adv. Funct. Mater.*, 2020, 30, 1910809.
- Z. Zhao, Y. Zhu, Z. Wang, Y. Zhang, K. Zhang, J. Chen, X. Liu and H. Chen, *Compos. A Appl. Sci. Manuf.*, 2022, 162, 107124.
- P. Gu, L. Lu, X. Yang, Z. Hu, X. Zhang, Z. Sun, X. Liang, M. Liu, Q. Sun, J. Huang and G. Zu, *Adv. Funct. Mater.*, 2024, 34, 2400589.
- 28. S. Kim, M. Saito, Y. Wei, P. Bhuyan, M. Choe, T. Fujie, K. Mondal and S. Park, Sensor. Actuat. A-Phys., 2023, 355, 114317.
- 29. S. Choi, J. Park, W. Hyun, J. Kim, J. Kim, Y. B. Lee, C. Song, H. J. Hwang, J. H. Kim, T. Hyeon and D. H. Kim, *ACS Nano*, 2015, **9**, 6626-6633.
- S. Hong, H. Lee, J. Lee, J. Kwon, S. Han, Y. D. Suh, H. Cho, J. Shin, J. Yeo and S. H. Ko, *Adv. Mater.*, 2015, 27, 4744-4751.
- 31. F. Wang, W. Wang, X. Mu and J. Mao, *Chem. Eng. J.*, 2020, **395**, 125183.