Supplementary Information (SI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2025

Supporting Information

A Novel Design Strategy of Tetradentate Pt(II) Complexes through Conformation Manager for High Efficiency and Narrow Emission in Blue Organic Light-Emitting Diodes

Kiun Cheong¹, Seungwon Han², and Jun Yeob Lee^{1,2,3*}

¹School of Chemical Engineering, Sungkyunkwan University

2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Korea

²Department of Display Convergence Engineering, Sungkyunkwan University

2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea

³SKKU Institute of Energy Science and Technology, Sungkyunkwan University

2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea

* Corresponding author

E-mail : leej17@skku.edu

Table of Contents

1. General information

2. Computational details

3. Experimental Procedures

4. Supplementary Figures

5. Supplementary Tables

6. Supplementary Scheme

7. ¹H and ¹³C NMR

8. Reference

1. General information

All chemical compounds were commercially available. Reaction reagents were purchased from Sigma Aldrich Co., Alfa aesar Co., and TCI Co. Paldium catalysts were puchased from P&H Tech Co. Solvents were purchased from Samchun Pure Chemical CO., Ltd., Duksan Sci. Co., and Daejung Chemical & Metal Co. ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were measured on Unity Inova 500 MHz spectrometer. Chloroform- d_3 (CDCl₃) and methylene chloride-d₂ (CD₂Cl₂) were used for NMR analysis. UV-vis spectrophometer (JASCO, V-730) and fluorescence spectopheometer (PerkinElmer, LS-55) were used for UV-vis spectra and PL spectra, respectrively. The HOMO levels were estimated using a cyclic voltammetry (CV) (Ivium Tech., Iviumstat). CV measurement was carried out in dichloromethane solution with scan rate at 100 mV/s. The platinum wires were used as working and counter and Ag/AgCl was used as reference electrode respectively. Internal standard was ferrocenium/ferrocene couple and supporting electrolyte was 0.1 M tetrabutylammonium perchlorate ($TBACIO_4$). The mass spectra were measured using a JMS-700 (JEOL) with high resolution fast atom bombardment (FAB) mode and Advion Expression-L CMS spectrometer in APCI mode. PL quantum yield and transient PL decay data were obtained using Quantaurus QY Absolute system (Hamamatsu, C11347-11) and Hamamatsu Quantaurus-Tau system (Hamamatsu, C11367-31). The thermal stability was measured using Seiko Exstar 6000 (TG/DTA6100) for thermogravimetric analyzer (TGA) and Nexta DSC 600 for differential Scanning Calorimetry analysis (DSC). The sample was heated at a rate of 10 °C/min to 600 °C under an N₂ atmosphere in the TGA measurement. The sample was heated at a rate of 10 °C/min from 0 °C to 350 °C in the DSC measurement.

2. Computational details

Density functional theory (DFT) calculations and time-dependent DFT (TD-DFT) were performed using the Gaussian 16 program package. The ground state geometries were optimized using B3LYP functional and LANL2DL basis set for Pt and B3LYP/6-31g(d,p) for light elements (C, H, N and O). The computations of the singlet and triplet transition energies were carried out using TD-DFT by same method based on the optimized ground state geometry.^[1]

3. Experimental Procedures

1-(3-bromophenyl)-4-methyl-1*H*-benzo[*d*]imidazole (Me-L2)

4-Methyl-1*H*-benzo[*d*]imidazole (1.32 g, 10 mmol), 1-bromo-3-fluorobenzene (1.7 mL, 15 mmol) and potassium phosphate tribasic (K₃PO₄) (10 g, 50 mmol) were added into a two-neck flask. *N*,*N*-dimethylformamide (20 mL) was added into the flask. The flask was stirred at 160 °C for 12 h. After completion of the reaction, the reaction mixture was slowly cooled to room temperature. The product was extracted using methylene chloride (MC) and water. A white solid was obtained after further purification by column chromatography using ethyl acetate (EA):hexane (1:4) eluent (1.8 g, yield 62%). ¹H NMR (500 MHz, CD₃Cl): δ 8.20 (s, 1H), 7.69 (td, J = 1.9, 0.5 Hz, 1H), 7.61 (dt, J = 7.2, 1.8 Hz, 1H), 7.50 – 7.42 (m, 2H), 7.37 (ddd, J = 8.2, 1.1, 0.6 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.21 – 7.17 (m, 1H), 2.74 (s, 3H). MS (APCI) m/z 287.0 [(M+H)⁺].

9-(4-(tert-butyl)pyridin-2-yl)-2-(3-(4-methyl-1*H*-benzo[*d*]imidazol-1-yl)phenoxy)-9*H*carbazole (Me-L1)

Me-L2 (1.7 g, 6.0 mmol), 9-(4-(*tert*-butyl)pyridin-2-yl)-9*H*-carbazol-2-ol^[2] (2.1 g, 6.6 mmol), copper iodide (I) (0.3 g, 1.8 mmol), picolinic acid (1.2 g, 9.6 mmol), and K₃PO₄ (5.1 g, 24 mmol) were added and dissolved in dimethyl sulfoxide (DMSO) (12 mL) into a two-neck flask. After that, the flask was stirred at 100 °C for 12 h. When the reaction finished, the residue was filtered using EA at short silica column. The filtrate was extracted using EA and washed by brine. A brown powder was obtained after further purification by column chromatography using an EA:hexane (1:4) eluent (2.3 g, yield 73%). ¹H NMR (500 MHz, CD₃Cl): δ 8.57 (dd, J = 5.3, 0.6 Hz, 1H), 8.17 (s, 1H), 8.11 – 8.08 (m, 1H), 8.08 – 8.06 (m, 1H), 7.72 (dt, J = 8.3, 0.8 Hz, 1H), 7.60 – 7.59 (m, 1H), 7.57 (dd, J = 1.7, 0.7 Hz, 1H), 7.50 – 7.46 (m, 1H), 7.42 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.40 – 7.36 (m, 1H), 7.34 – 7.30 (m, 1H), 7.27 (dd, J = 5.4, 1.7 Hz, 1H), 7.23 – 7.18 (m, 3H), 7.15 – 7.12 (m, 1H), 7.11 (ddd, J = 8.3, 2.3, 0.9 Hz, 1H), 7.08 (dd, J = 8.4, 2.2 Hz, 1H), 2.71 (s, 3H), 1.35 (s, 9H). MS (APCI) m/z 523.2 [(M+H)⁺].

9-(4-(tert-butyl)pyridin-2-yl)-2-(3-(3-(3,5-di-tert-butylphenyl)-4-methyl-1H-3λ⁴-

benzo[d]imidazol-1-yl)phenoxy)-9H-carbazole trifluoromethanesulfonate (Me-L)

Me-L1 (3.4 g, 5.7 mmol), (3,5-di-*tert*-butylphenyl)(mesityl)iodonium trifluoromethane sulfonate^[3] (2.0 g, 3.8 mmol) and copper acetate (41.8 mg, 0.2 mmol) were added into a two-neck flask and dissolved in dimethylformamide (19 mL). The flask was stirred at 130 °C at 12 h. After that, filtered roughly through a short pad of silica and washed with EA:MC (1/9) eluent.

Brown powder was obtained without further purification and used it next metalation (3.1 g, yield 94%).

Platinum(II) $1-(3-((9-(4-(tert-butyl)pyridin-2-yl-\kappa N)-9H-carbazol-2-yl-\kappa C^1)oxy)phenyl-\kappa C^1)-3-(3,5-di-tert-butylphenyl)-4-methyl-1H-benzo[d]imidazol-2-ylidene-\kappa C^2 (Pt-Me-bzim)$

Me-L (2.0 g, 2.3 mmol), dichloro(1,5-cyclooctadiene)platinum(II) (Pt(cod)Cl₂) (0.9 g, 2.3 mmol), and sodium acetate (NaOAc) (0.6 g, 7.0 mmol) were added it into a two-neck flask and dissolved in DMF (40 mL). The flask was stirred at 160 °C for 12 h. After that, the reaction was extracted using MC and water. A yellow powder was obtained after further purification by column chromatography using an MC:hexane (1:1) eluent (850 mg, yield 41%). ¹H NMR (500 MHz, CD₂Cl₂): δ 8.61 (d, J = 6.3 Hz, 1H), 8.07 (s, J = 8.3 Hz, 1H), 8.04 – 8.00 (m, 1H), 7.79 (d, J = 1.9 Hz, 1H), 7.77 (d, J = 8.2 Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.61 – 7.57 (m, 1H), 7.50 (d, J = 1.5 Hz, 2H), 7.40 – 7.35 (m, 2H), 7.35 – 7.31 (m, 2H), 7.30 (d, J = 8.2 Hz, 1H), 7.26 (t, J = 7.9 Hz, 1H), 7.07 (d, J = 5.0 Hz, 1H), 7.06 – 7.04 (m, 1H), 6.11 (dd, J = 6.3, 2.0 Hz, 1H), 1.85 (s, 3H), 1.46 (s, 9H), 1.13 (s, 18H). ¹³C NMR (125MHz, CD₂Cl₂) δ 190.2, 162.1, 155.0, 154.2, 152.6, 150.4, 148.4, 144.2, 138.9, 137.8, 134.9, 132.5, 128.9, 126.7, 124.5, 124.4, 123.9, 123.0, 122.3, 119.9, 116.1, 115.4, 114.2, 113.6, 112.3, 112.2, 109.7, 108.1, 35.2, 31.2, 29.8, 19.0. HRMS (FAB+) m/z 904.3565 [(M+H)⁺]. Calculated for C₄₉H_{4x}N₄OPt: 903.3476.

4-bromo-1-(3-iodophenyl)-1*H*-benzo[*d*]imidazole (Ph-L3)

Ph-L3 was synthesized by using the same method for synthesis of **Me-L2**. 4-Bromo-1Hbenzo[*d*]imidazole (7.4 g, 37.3 mmol) was used and a product was obtained after further purification by column chromatography using an EA/hexane (1:4) eluent (7.1 g, yield 48%). ¹H NMR (500 MHz, CD₃Cl): δ 8.14 (s, 1H), 7.87 (t, J = 1.8 Hz, 1H), 7.84 (dd, J = 7.9, 0.9 Hz, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.49 (ddd, J = 8.0, 2.0, 0.8 Hz, 1H), 7.46 (d, J = 8.2 Hz, 1H), 7.32 (t, J = 8.0 Hz, 1H), 7.22 (t, J = 8.0 Hz, 1H). MS (APCI) m/z 398.9 [(M+H)⁺].

2-(3-(4-bromo-1*H*-benzo[*d*]imidazol-1-yl)phenoxy)-9-(4-(*tert*-butyl)pyridin-2-yl)-9*H*-

carbazole (Ph-L2)

Ph-L2 was synthesized by using the same method for synthesis of **Me-L1**. **Ph-L3** (7.0 g, 17.5 mmol) was used and a product was obtained after further purification by column chromatography using an EA/hexane (1:4) eluent (6.3 g, yield 61%). ¹H NMR (500 MHz, CD₃Cl): δ 8.58 (d, J = 5.3 Hz, 1H), 8.16 (s, 1H), 8.10 (t, J = 8.1 Hz, 2H), 7.73 (d, J = 8.3 Hz, 1H), 7.61 (d, J = 2.1 Hz, 1H), 7.58 (d, J = 1.5, 1H), 7.52 – 7.47 (m, 3H), 7.46 – 7.41 (m, 1H), 7.33 (t, J = 7.4 Hz, 1H), 7.29 (d, J = 5.3, 1.7 Hz, 1H), 7.21 (t, J = 2.1 Hz, 1H), 7.17 (dd, J = 16.1, 8.0 Hz, 2H), 7.13 (dd, J = 8.4, 2.3 Hz, 1H), 7.08 (dd, J = 8.4, 2.1 Hz, 1H), 1.36 (s, 9H). MS (APCI) m/z 587.1 [(M+H)⁺].

9-(4-(tert-butyl)pyridin-2-yl)-2-(3-(4-phenyl-1H-benzo[d]imidazol-1-yl)phenoxy)-9Hcarbazole (Ph-L1)

Ph-L2 (2.0 g, 3.4 mmol), phenylboronic acid (0.5 g, 4.0 mmol), tris(dibenzylideneacetone)dipalladium ($Pd_2(dba)_3$) (0.3 g, 0.3 mmol), XPhos (0.5 g, 1.0 mmol)

and K₃PO₄ (2.2 g, 10.2 mmol) were added and dissolved in toluene (7 mL)/1,4-dioxane/water (2:1:1) into a two-neck flask. The flask was stirred at 100 °C for 12 h. After that, the product was extracted using MC and water. A pale yellow powder was obtained after further purification by column chromatography using a EA:hexane (1:4) eluent (2.0 g, yield 98%). ¹H NMR (500 MHz, CD₃Cl): δ 8.59 (dd, J = 5.3, 0.6 Hz, 1H), 8.26 (s, 1H), 8.13 – 8.10 (m, 1H), 8.09 (ddd, J = 7.8, 1.2, 0.7 Hz, 1H), 7.95 (dd, J = 8.2 Hz, 2H), 7.73 (dd, J = 4.8, 4.1 Hz, 1H), 7.62 (d, J = 2.1 Hz, 1H), 7.59 (dd, J = 1.7, 0.6 Hz, 1H), 7.54 (dt, J = 2.4, 1.3 Hz, 2H), 7.51 (dt, J = 3.8, 1.7 Hz, 2H), 7.48 (dd, J = 7.5, 1.0 Hz, 1H), 7.44 (ddd, J = 8.4, 7.2, 1.3 Hz, 1H), 7.42 – 7.37 (m, 2H), 7.37 – 7.31 (m, 1H), 7.29 (dd, J = 5.4, 1.7 Hz, 1H), 7.27 – 7.25 (m, 1H), 7.24 (ddd, J = 7.8, 2.0, 0.9 Hz, 1H), 7.14 (ddd, J = 8.4, 2.2 Hz, 1H), 1.37 (s, 9H). MS (APCI) m/z 585.3 [(M+H)⁺].

9-(4-(tert-butyl)pyridin-2-yl)-2-(3-(3-(3,5-di-tert-butylphenyl)-4-phenyl-1H-3λ⁴-

benzo[d]imidazol-1-yl)phenoxy)-9H-carbazole trifluoromethanesulfonate (Ph-L)

Ph-L was synthesized by using the same method for synthesis of **Me-L**. **Ph-L1** (0.2 g, 0.3 mmol) was used and a product was filtered roughly through a short pad of silica and washed with EA:MC (1:9) eluent. Brown powder was obtained without further purification and used it next metalation (0.25 g, yield 82%).

Platinum(II) 1-(3-((9-(4-(*tert*-butyl)pyridin-2-yl- κ N)-9*H*-carbazol-2-yl- κ C¹)oxy)phenyl- κ C¹)-3-(3,5-di-*tert*-butylphenyl)-4-phenyl-1*H*-benzo[*d*]imidazol-2-ylidene- κ C² (Pt-Ph-bzim)

Pt-Ph-bzim was synthesized by using the same method for synthesis of **Pt-Me-bzim**. **Me-L** (600 mg, 0.65 mmol) was used and a product was obtained after further purification by column chromatography using an MC:hexane (1:1) eluent (440 mg, yield 35%).

¹H NMR (500 MHz, CD_2Cl_2): δ 8.37 (d, J = 6.3 Hz, 1H), 8.27 (dd, J = 8.4, 0.9 Hz, 1H), 8.06 – 8.01 (m, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 1.8 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.70 (dd, J = 7.7, 0.9 Hz, 1H), 7.59 (s, 1H), 7.52 (dd, J = 8.3, 7.6 Hz, 2H), 7.41 – 7.36 (m, 1H), 7.36 – 7.26 (m, 5H), 7.22 (dd, J = 7.5, 0.9 Hz, 1H), 7.07 (dd, J = 8.1, 0.9 Hz, 1H), 7.01 (t, J = 1.7 Hz, 1H), 7.00 – 6.97 (m, 1H), 6.79 (s, 1H), 6.47 (d, J = 84.3 Hz, 1H), 5.95 (dd, J = 6.3, 2.0 Hz, 1H), 1.10 (s, 18H), 1.04 (s, 9H). ¹³C NMR (125MHz, CD₂Cl₂) δ 191.3, 162.0, 154.8, 154.0, 152.3, 150.5, 148.5, 144.3, 138.9, 137.6, 137.2, 133.2, 133.1, 126.7, 124.41, 124.38, 123.8, 123.2, 122.3, 122.0, 119.9, 116.2, 115.64, 115.55, 115.5, 114.1, 113.7, 112.4, 112.2, 110.7, 108.0, 35.1, 34.6, 31.3, 29.7. HRMS (FAB+) m/z 966.3708 [(M+H)⁺]. Calculated for C₅₄H₅₀N₄OPt: 965.3633.

4. Supplementary Figures

Figure S1. (a) The details of calculated geometries. (b) Root mean square displacement (RMSD) of **BD-02**, **Pt-Me-bzim** and **Pt-Ph-bzim**.

Figure S2. PL spectra of (a) BD-02, (b) Pt-Me-bzim, and (c) Pt-Ph-bzim at 298 and 77 K.

Figure S3. PL spectra of BD-02, Pt-ME-bzim, and Pt-Ph-bzim on THF solution $(1.0 \times 10^{-5} \text{ M})$ at 298K

Figure S4. Photoemission yield spectroscopy in air measurement of (a) Pt-ME-bzim and (b) Pt-Ph-bzim in air measurements

Figure S5. (a) TGA and (b) DSC measurements for Pt-Me-bzim and Pt-Ph-bzim (DSC measurements: 2^{nd} scan after N₂ treatment, 10 °C min⁻¹, under N₂).

Figure S6. TRPL curves of (a) BD-02, (b) Pt-Me-bzim, and (c) Pt-Ph-bzim.

Figure S7. ADPL curves of (a) BD-02, (b) Pt-Me-bzim, and (c) Pt-Ph-bzim.

Figure S8. (a) Energy diagram of PhOLEDs with **BD-02**, **Pt-Me-bzim**, and **Pt-Ph-bzim**. (b) The molecular structure of materials used for fabricating PhOLEDs.

Figure S9. (a) EL spectra, (b) *J-V-L* curves, and (c) luminance-EQE curves of PhOLEDs based on **BD-02**, **Pt-Me-bzim**, and **Pt-Ph-bzim** at 15 and 20 wt% doping concentration.

Figure S10. (a) Energy diagram of PhOLEDs with **BD-02**, **Pt-Me-bzim**, and **Pt-Ph-bzim**. (b) op erational lifetime curves of PhOLEDs.

5. Supplementary Tables

	 measurea	nom	phoemission	yiciu	specifoscopy	ш	an(FISA)
measurments							

C		HOMO [eV]	
Sample –	1 st	2 nd	3 rd
Pt-Me-bzim	-5.28	-5.30	-5.28
Pt-Ph-bzim	-5.26	-5.25	-5.27

Pt dopant	EQE _{max} (%)	CIE _y	FWHM (nm)	ref
Pt-Me-bzim	27.1	0.084	18	This work
Pt-Ph-bzim	27.5	0.100	20	This work
BD-02 (PtON- TBBI)	25.2	0.115	21	This work
PtON1	23.3	0.13	-	4
PtON7	20.4	0.14	-	4
PtON7-dtb	24.8	0.079	29	5
PtON1-tBu	5.3	0.098	24	5
PtON6-tBu	10.9	0.093	30	5
Pt7O7	26.3	0.24	-	6
6	15.4	0.17	-	7
10	17.6	0.29	-	8
11	15.6	0.28	-	8
PtSN1	14.4	0.48	-	9
PtSN2	36.2	0.47	-	9
Pt-Ada	20.6	0.11	-	10

Table S2. Summarized EQE, CIE_y , and FWHM of tetradentate Pt(II) complexes

Pt-R	21.4	0.12	-	10
Pt-AdaPh	21.2	0.12	-	10
Pt-AdaTol	22.6	0.122	-	10
PtON7-TMS	21.4	0.097	30	11
t-Pt-Ad	20.3	0.092	-	12
Pt-NPT	19.8	0.118	-	12
Pt-adNPT	15.7	0.090	-	12
Pt-tmCyCz	21.5	0.13	22	13
Pt-tBuCz	23.7	0.172	25	2
Pt-dipCz	25.0	0.157	22	2
Pt-biPh	19.0	0.15	21	14
Pt-biPh5tBu	18.1	0.168	22	14
Pt-biPh4tBu	21.8	0.149	21	14
PtON-tb-DTB	20.9	0.22	-	15
PtON-tb-TTB	26.7	0.22	-	15
Pt3	20.2	0.181	-	16
Pt4	21.0	0.175	-	16
PtON5N-dtb	20.4	0.17	30	17

Pt-SPCz	25.1	0.131	22	18
Pt(t- BuBnOCzPy)	19.0	0.17	26	19
Pt(BnOCz4t- BuPy)	18.6	0.17	26	19
PtON7-dtb	27.6	0.088	28	20
BD-02 (PtON- TBBI)	28.0	0.104	21	20

6. Supplementary Scheme

Scheme S1. Improved synthetic scheme of Pt-Ph-bzim.

7. ¹H, ¹³C NMR and HRMS

¹H NMR data of **Pt-Me-bzim**.

¹³C NMR data of **Pt-Me-bzim**.

HRMS data of Pt-Me-bzim.

¹H NMR data of **Pt-Ph-bzim**.

HRMS data of **Pt-Me-bzim**.

8. Reference

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2016**.
- [2] K. Cheong, S. W. Han, J. Y. Lee, *Small Methods* 2024, 2301710.
- [3] J. Sun, H. Ahn, S. Kang, S.-B. Ko, D. Song, H. A. Um, S. Kim, Y. Lee, P. Jeon, S.-H. Hwang, Y. You, C. Chu, S. Kim, *Nat. Photonics* **2022**, *16*, 212.
- [4] X.-C. Hang, T. Fleetham, E. Turner, J. Brooks, J. Li, *Angew. Chem. Int. Ed.* **2013**, *52*, 6753-6756.
- [5] T. Fleetham, G. Li, L. Wen, J. Li, *Adv. Mater.* **2014**, *26*, 7116-7121.
- [6] G. Li, T. Fleetham, J. Li, *Adv. Mater.* **2014**, *26*, 2931-2936.
- [7] X. Wang, T. Peng, C. Nguyen, Z.-H. Lu, N. Wang, W. Wu, Q. Li, S. Wang, Adv. Funct. Mater. 2017, 27, 1604318.
- [8] C. Lee, R. Zaen, K.-M. Park, K. H. Lee, J. Y. Lee, Y. Kang, *Organometallics* **2018**, *37*, 4639-4647.
- [9] Y. K. Moon, J.-S. Huh, S. Kim, S. Kim, S. Y. Yi, J.-J. Kim, Y. You, ACS Appl. Electron. Mater. 2020, 2, 604-617.
- [10] J.-S. Huh, M. J. Sung, S.-K. Kwon, Y.-H. Kim, J.-J. Kim, *Adv. Funct. Mater.* **2021**, *31*, 2100967.
- [11] H. J. Park, J.-H. Jang, J.-H. Lee, D.-H. Hwang, ACS Appl. Mater. Interfaces **2022**, 14, 34901-34908.
- [12] J.-S. Huh, D. Y. Lee, K. H. Park, S.-K. Kwon, Y.-H. Kim, J.-J. Kim, *Chem. Eng. J.* **2022**, *450*, 137836.
- [13] K. Cheong, U. Jo, W. P. Hong, J. Y. Lee, *Small Methods* **2024**, *8*, 2300862.
- [14] J. Choi, K. Cheong, S. Han, J. Y. Lee, Adv. Opt. Mater. 2024, 2401451.
- [15] Y. H. Jung, G. S. Lee, S. Muruganantham, H. R. Kim, J. H. Oh, J. H. Ham, S. B. Yadav, J. H. Lee, M. Y. Chae, Y.-H. Kim, J. H. Kwon, *Nat. Commun.* 2024, 15, 2977.
- [16] C. H. Ryu, U. Jo, I. Shin, M. Kim, K. Cheong, J.-K. Bin, J. Y. Lee, K. M. Lee, Adv. Opt. Mater. 2024, 12, 2303109.
- [17] G. Li, L. Ameri, B. Dorame, Z.-Q. Zhu, J. Li, Adv. Funct. Mater. 2024, 2405066.

- [18] H. Lee, B. Park, G. R. Han, M. S. Mun, S. Kang, W. P. Hong, H. Y. Oh, T. Kim, *Adv. Mater.* **2024**, 2409394.
- [19] R. Kumaresan, J. Lim, H. Kim, T. Manigandan, H.-Y. Park, B. H. Cho, J. Y. Lee, S.-H. Jin, *Dyes Pigm.* **2024**, *228*, 112230.
- [20] G. Li, K. Xu, J. Zheng, X. Fang, Y.-F. Yang, W. Lou, Q. Chu, J. Dai, Q. Chen, Y. Yang, Y.-B. She, *Nat. Commun.* 2023, 14, 7089.
- [21] H. Lee, B. Park, G. R. Han, M. S. Mun, S. Kang, W. P. Hong, H. Y. Oh and T. Kim, *Adv. Mater.*, **2024**, *36*, 2409394.
- [22] T. Lampe, T. D. Schmidt, M. J. Jurow, P. I. Djurovich, M. E. Thompson and W. Brütting, *Chem. Mater.*, **2016**, *28*, 712-715.
- [23] K. H. Kim, C. K. Moon, J. H. Lee, S. Y. Kim and J. J. Kim, *Adv. Mater.*, **2014**, *26*, 3844-3847.