1	Supporting	Information
-	Supporting	momwhom

2	Ultrathin and	permeable silver	nanowires/pol	yvinyl	alcohol ep	oidermal
---	---------------	------------------	---------------	--------	------------	----------

3 electrode for continuous electrophysiological monitoring

4

5 Junhong Yi^a, Yuheng Gu^a, Jiawei Yang^{a,b}, Zonglei Wang^{a,b}, Yuli Wang^{a,b}, Wenqing Yan^a,

6 Qingyuan Sun^{a,b}, Pengcheng Zhou^{a,b}, Yumiao Xu^{c,d}, Xuezhong He^{a,b}, Junwen Zhong^e,

7 Yan Wang^{a,b,f,g*}

8

9 ^aDepartment of Chemical Engineering, Guangdong Technion-Israel Institute of

10 Technology, 241 Daxue Road, Shantou, Guangdong 515063, China.

^bThe Wolfson Department of Chemical Engineering, Technion-Israel Institute of
 Technology, Haifa 3200003, Israel.

¹³ ^cDepartment of Materials Science and Engineering, Guangdong Technion-Israel
¹⁴ Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China.

¹⁵ ^dDepartment of Materials Science and Engineering, Technion-Israel Institute of

16 Technology, Haifa 3200003, Israel.

17 ^eDepartment of Electromechanical Engineering and Centre for Artificial Intelligence

18 and Robotics, University of Macau, Macau SAR 999078, China.

19 ^fGuangdong Provincial Key Laboratory of Materials and Technologies for Energy

20 Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road,

21 Shantou, Guangdong 515063, China.

²² ^gGuangdong Provincial Key Laboratory of Science and Engineering for Health and

23 Medicine, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong

- 24 515063, China.
- 25
- 26 ***Corresponding author. Email**: wang.yan@technion.ac.il

27 Table S1. Comparison of the ultrathin AgNWs/PVA epidermal electrode with

28 recently reported ultrathin gel epidermal electrodes on thickness, gas permeability,

29 skin adhesion, stretchability, tensile strength, durability, skin contact impedance

Materials	Thickness (µm)	Gas Permeability	Skin adhesion (method)	Stretchability (%)	Tensile strength (kPa)	Durability (cycle)	Skin contact impedance (100Hz)	Application (signals, continuous recording duration)	Ref.
AgNW/TP U	4.6	23 mg/(cm ² ·h)	-	350	> 900	1000 (10% strain)	$\sim 10 \; k\Omega$	ECG (6 s), EMG (50 s)	[1]
Gelatin/Gl ycerol	< 7	$\begin{array}{c} 1890.0 \pm 134 \\ g/(m^2 \cdot d) \end{array}$	87 μJ/cm ² (peel-off test)	> 200	> 1000	500 (200% strain)	-	-	[2]
Gelatin/PU /Glycerol	10.3	$\begin{array}{c} 1669.3\pm23\\ g/(m^2 \cdot d) \end{array}$	176.8 μJ/cm ² (peel-off test)	696	2500	1000 (100% strain)	31.3 kΩ	ABR (10 ms) ECG (12 h) EEG (10 s) EOG (10 s) MCV (10 s) VEP (300 ms)	[3]
PEDOT: PSS/ethyle ne glycol/PV DF-co- HFP	< 10	-	-	-	-	-	$\sim 20 \ k\Omega$	ECG (> 20 s)	[4]
PEDOT: PSS/PEO	< 1	32 mg/(cm ² ·h)	-	48	-	-	48 kΩ	EMG (18 s), ECG (20 s)	[5]
PEDOT: PSS/PVA/ PEG	20	46.3 mg/(cm ² ·h)	-	24.3	3900	-	$\sim 80 \; k\Omega$	ECG (10 s), EMG (22 s)	[6]
SEBS/AgN Ws	2-8	18.4 mg/(cm ² ·h)	1.3 N (peel- off test)	> 60	-	-	$\sim 110 \; k\Omega$	ECG (10 s), EMG (60 s)	[7]
AgNWs/T PU	120	-	-	1019	2640	5 (50% strain)	-	motion monitoring (25s)	[8]
HPAN/PU/ AgNW	15	1748.09 g/(m ² ·d)	430.87 mN cm ⁻¹ (peel- off test)	> 600	> 3000	-	$\sim 70 \; k\Omega$	EMG (24s) ECG (6 s)	[9]
PEDOT:P SS/PVA/d- sorbitol	2.5	-	51.4 N m ⁻¹ (peel-off test)	> 50	-	1000 (40% strain)	< 200 kΩ	EMG (1 h) ECG (7 d)	[10]
AgNWs/P VA	14.7	0.03 (cm ² ·s·cmHg)	270.5 μJ/cm ² (peel-off test)	662	1500	1000 (40% strain)	28.6 kΩ	ECG (> 3 h), EEG (10 min), EMG (10 s)	This work

30 and application for long-term, continuous health monitoring.

Abbreviations: PEDOT: PSS: poly(3,4-ethylenedioxythiophene): poly(4-31 styrenesulfonate); PEO: polyethylene oxide; Aam: acrylamide; PU: polyurethane. ABR: 32 auditory brainstem response; EOG: electrooculogram; VEP: visual evoked potential; 33 MCV: motor conduction velocity; ERG: electroretinogram; PVDF-co-HFP: 34 poly(vinylidene fluoride-co-hexafluoropropylene); PEG: polyethylene glycol; CMC: 35 carboxymethylcellulose; SAM: sodium-poly([2(methacryloyloxy) ethyl] dimethyl-(3-36 sulfo-propyl) ammonium hydroxide-co-acrylamide); PVP: polyvinylpyrrolidone; PDA 37 NPs: polydopamine nanoparticles; SEBS: styrene ethylene butylene styrene; TPU: 38 thermoplastic polyurethane; HPAN: hydrolyzed-polyacrylonitrile. 39

41 Fig. S1 Optical images of AgNWs/PVA gel loading with (A) glutaric dialdehyde and

42 (B) phosphoric acid. Scale bar, 50 μm.

45 Fig. S2 Schematic fabrication process of the AgNWs/PVA gel.

47 Fig. S3 Effect of precast volumes on the thickness of AgNWs/PVA gel.

49 Fig. S4 Effect of AgNWs concentrations on the thickness of AgNWs/PVA gel.

- 50 51
- Fig. S5 Effect of thickness of AgNWs/PVA gel on the air permeance.

Fig. S6 Effect of thickness of AgNWs/PVA gel on the adhesion. (A) Force stroke curves of AgNWs/PVA gel under different thickness. (B) Adhesion energy of

55 AgNWs/PVA gel under different thickness.

- 56 57
- Fig. S7 Photograph of ultrathin AgNWs/PVA gel attached on the wrist. Scale bar,
- 58 1 cm.

60 Fig. S8 Wear duration test. (A) Commercial gel structure. Scale bar, 1 cm. (B)

- 61 Comparison of AgNWs/PVA gel and commercial gel adhered to the arm at different
- 62 times. Scale bar, 1 cm.

Fig. S9 Contact angle of the ultrathin AgNWs/PVA gel. Scale bar, 50 μm.

66 Fig. S10 Effect of artificial sweat on the mechanical and electrical properties of

67 AgNWs/PVA gel. (A) Force stroke curves of AgNWs/PVA gel w/ and w/o artificial

68 $\,$ sweat. (B) Comparison of the adhesion energy for AgNWs/PVA gel w/ and w/o $\,$

 $\label{eq:sweat} \ensuremath{\text{70}} \qquad \text{sweat. (D) Skin contact impedance of AgNWs/PVA gel w/ and w/o artificial sweat.}$

- 72 Fig. S11 3D confocal laser microscope images of AgNWs/PVA gel with different
- **AgNWs concentrations.** Scale bar, 50 μm.

76 Fig. S12 Swelling ratio of AgNWs/PVA gel as a function of water absorption time.

77

78 Fig. S13 Effect of water on the mechanical properties of AgNWs/PVA gel. (A)

79 Force stroke curves of AgNWs/PVA gel w/ and w/o water. (B) Comparison of the

 $80 \qquad adhesion \ energy \ for \ AgNWs/PVA \ gel \ w/ \ and \ w/o \ water. \ (C) \ Tensile \ stress \ curves \ of$

 $81 \qquad AgNWs/PVA \ gel \ w/ \ and \ w/o \ water.$

83 Fig. S14 Effect of placement time on skin contact impedance of AgNWs/PVA gel.

85 Fig. S15 SNR of EMG signals recorded by AgNWs/PVA gels under different grip

86 forces.

88 Fig. S16 Effect of artificial sweat on the EMG monitoring by AgNWs/PVA gel. (A)

89 EMG monitoring by AgNWs/PVA gel w sweat and w/o artificial. (B) SNR of EMG

90 signals by AgNWs/PVA gel w and w/o artificial.

- 92 Fig. S17 SNR of ECG signals measured by commercial gel and ultrathin
- 93 AgNWs/PVA gel.

95 Fig. S18 Photographs showing AgNWs/PVA gel during tensile testing experiments.

- 96 (A) original and (B) stretched states. Scale bar, 1 cm.
- 97

- 99 Fig. S19 Photographs showing the process of separating AgNWs/PVA gel from
- **artificial skin in a tack separation experiment.** Scale bar, 5 mm.

References

103	1	W. Zhou, S. Yao, H. Wang, Q. Du, Y. Ma and Y. Zhu, ACS Nano, 2020, 14, 5798-5805.
104	2	S. Cheng, Z. Lou, L. Zhang, H. Guo, Z. Wang, C. Guo, K. Fukuda, S. Ma, G. Wang, T. Someya,
105		H. M. Cheng and X. Xu, Adv. Mater., 2022, 35.
106	3	Z. Zhang, J. Yang, H. Wang, C. Wang, Y. Gu, Y. Xu, S. Lee, T. Yokota, H. Haick, T. Someya
107		and Y. Wang, Sci. Adv., 2024, 10, eadj5389.
108	4	S. Chen, K. Hou, T. Li, X. Wu, Z. Wang, L. Wei and W. L. Leong, Adv. Mater. Technol., 2022,
109		8.
110	5	G. Li, Y. Gong, S. Fang, T. You, R. Shao, L. Yao, C. Liu, C. Wu, J. Niu and WY. Lai, Sci. China
111		Mater., 2024, 67, 1481-1490.
112	6	HL. Peng, T. Qian, T. Xian, C. Jiang, Y. Qin, Q. Li and S. Song, Chem. Eng. J., 2024, 494.
113	7	T. Li, Y. Ding, C. Teng, Y. Zheng, X. Wang and D. Zhou, ACS Appl Mater Interfaces, 2024, 16,
114		60625-60632.
115	8	Y. Shi, T. Ding, Z. Yuan, R. Li, B. Wang and Z. Wu, Journal, 2022, 2, 52-63.
116	9	X. Yang, S. Wang, M. Liu, L. Li, Y. Zhao, Y. Wang, Y. Bai, Q. Lu, Z. Xiong, S. Feng and T.
117		Zhang, Small, 2022, 18, e2106477.
118	10	J. H. Shin, J. Y. Choi, K. June, H. Choi and T. I. Kim, Adv Mater, 2024, 36, e2313157.
119		