ELECTRONIC SUPPLEMENTARY INFORMATION FOR

Semiconducting Liquid Crystalline Dispersions with Precisely Adjustable Band Gaps and Polarized Photoluminescence

Tingting Zhou,^{1,2} Penghao Guo,^{1,2} Xuelian Jiang,^{1,2} Hongbo Zhao,^{1,2} Qing Zhang,³ Pei-Xi Wang.^{1,2}*

¹ School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui,

230026, P. R. China

² i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics of the Chinese Academy of Sciences, 398 Ruoshui Road,

Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China

³ NANO-X Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics of the

Chinese Academy of Sciences, 385 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China

*Correspondence: pxwang2020@sinano.ac.cn

EXPERIMENTAL METHODS

Materials

Hydrochloric acid (37 wt.% in water, Sigma-Aldrich), hydrobromic acid (48 wt.% in water, Sigma-Aldrich), hydroiodic acid (57 wt.% in water, Sigma-Aldrich), manganese(II) acetate tetrahydrate (99%, Sigma-Aldrich), lead(II) oxide (99%, Sigma-Aldrich), n-butylamine (99.5%, Sigma-Aldrich), 2-phenylethylamine (99%, Sigma-Aldrich), phenylmethylamine (99%, Sigma-Aldrich), [(4-fluorophenyl)methyl]amine (97%, Sigma-Aldrich), [(4-chlorophenyl)methyl]amine (98%, Sigma-Aldrich), N,N-dimethylformamide (anhydrous, 99.8 %, Sigma-Aldrich), cis-9-octadecenoic acid (oleic acid; > 99.0 %, Sigma-Aldrich), cis-1-amino-9-octadecene (oleylamine; > 98.0 %, Sigma-Aldrich), chlorobenzene (anhydrous, 99.8 %, Sigma-Aldrich), and cyclohexane (anhydrous, 99.5 %, Sigma-Aldrich) were used as received.

Characterization

Photoluminescence emission spectroscopy was conducted on a Hitachi F-4600 Fluorescence Spectrophotometer and the perovskite liquid crystalline dispersions were sealed in quartz cuvettes with an optical path length of 1 mm. Field emission scanning electron spectroscopy was performed on a Hitachi Regulus 8230 Ultra-high Resolution Scanning Electron Microscope. Atomic force microscopy was conducted on a Bruker Dimension Icon Atomic Force Microscope with ScanAsyst. Samples for SEM and AFM observations were prepared by spin-coating the colloidal lyotropic liquid crystalline dispersions of perovskite nanoplatelets (about 100 mg per mL in chlorobenzene) onto flat silicon (111) surfaces at a spinning speed of 6000 revolutions per minute for 60 seconds followed by thermal annealing at 373 K for 10 minutes. Excess surfactants on the samples were removed by immersion in a large volume (50 mL) of cyclohexane for about 30 minutes then dried in a nitrogen or argon atmosphere. Powder X-ray diffraction patterns were collected on a Bruker D8 ADVANCE Diffractometer using copper K-alpha radiation (with a wavelength of 0.15406 nm). Polarized optical microscopy images were obtained from a BM2100POL Polarized Optical Microscope.

Under White Light

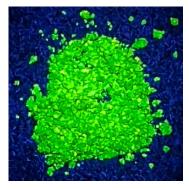
(CH₃-CH₂-CH₂-CH₂-NH₃)₂PbBr₄

 $(C_6H_5\text{-}CH_2\text{-}CH_2\text{-}NH_3)_2PbCl_4$

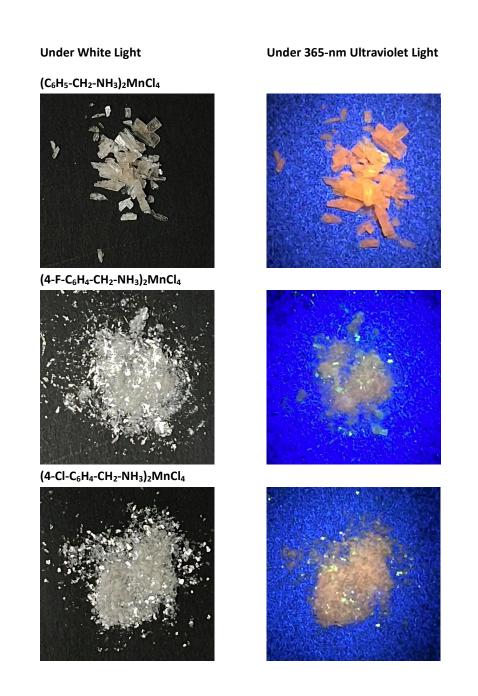
 $(C_6H_5\text{-}CH_2\text{-}CH_2\text{-}NH_3)_2PbBr_4$

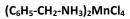


(C₆H₅-CH₂-CH₂-NH₃)₂PbI₄



Under 365-nm Ultraviolet Light





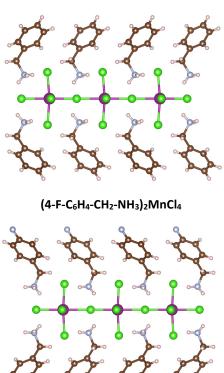


Figure S1. Photographs showing the synthesized two-dimensional organic-inorganic lead halide perovskite crystals of (CH₃-CH₂-CH₂-CH₂-CH₂-NH₃)₂PbBr₄, (C₆H₅-CH₂-CH₂-NH₃)₂PbBr₄, and (C₆H₅-CH₂-CH₂-NH₃)₂PbI₄.

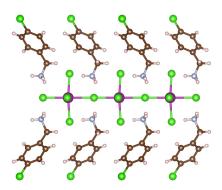
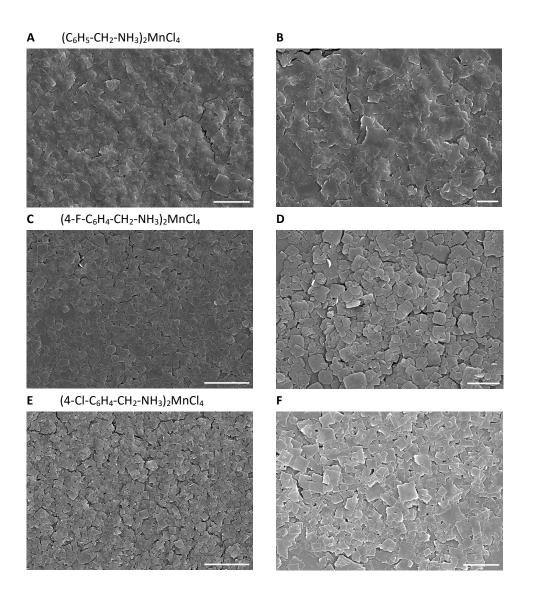


Figure S2. Photographs of the synthesized two-dimensional organic-inorganic manganese chloride perovskite crystals of $(C_6H_5-CH_2-NH_3)_2MnCl_4$, $(4-F-C_6H_4-CH_2-NH_3)_2MnCl_4$, and $(4-Cl-C_6H_4-CH_2-NH_3)_2MnCl_4$, where photos in the left column were taken under white light, while photos in the right column were taken under ultraviolet light with a wavelength of 365 nanometers.



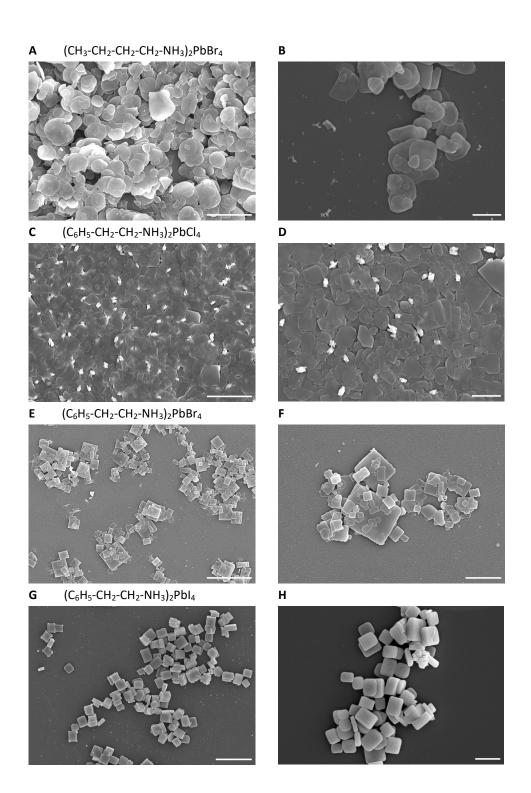

(4-Cl-C₆H₄-CH₂-NH₃)₂MnCl₄

Figure S3. Crystal structures (obtained by single-crystal X-ray diffraction analysis) of perovskites $(C_6H_5-CH_2-NH_3)_2MnCl_4$, $(4-F-C_6H_4-CH_2-NH_3)_2MnCl_4$.

Figure S4. Scanning electron microscopy images showing plate-shaped colloidal nanocrystals of (C₆H₅-CH₂-NH₃)₂MnCl₄ (**A**,**B**), (4-F-C₆H₄-CH₂-NH₃)₂MnCl₄ (**C**,**D**), and (4-Cl-C₆H₄-CH₂-NH₃)₂MnCl₄ (**E**,**F**). Scale bars: 5 μm (**A**,**C**,**E**), 2 μm (**B**,**D**,**F**).

Figure S5. Scanning electron microscopy images of the colloidal nanoparticles of (CH₃-CH₂-CH₂-CH₂-NH₃)₂PbBr₄ (**A**,**B**), (C₆H₅-CH₂-CH₂-NH₃)₂PbCl₄ (**C**,**D**), (C₆H₅-CH₂-CH₂-NH₃)₂PbBr₄ (**E**,**F**), and (C₆H₅-CH₂-CH₂-NH₃)₂PbI₄ (**G**,**H**). Scale bars: 5 μm (**A**,**C**,**E**,**G**), 2 μm (**B**,**D**,**F**,**H**).

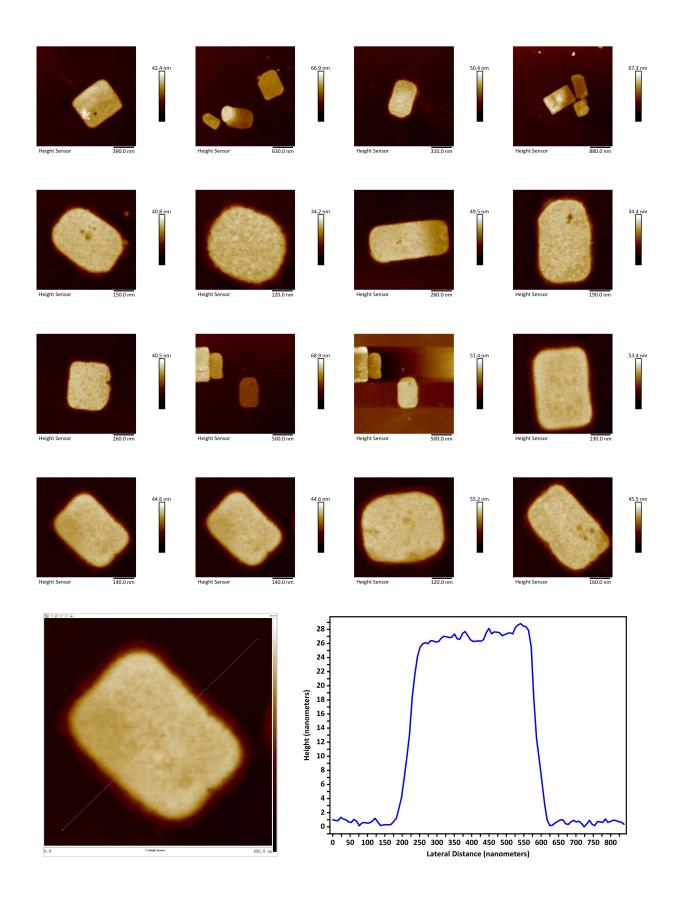
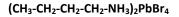
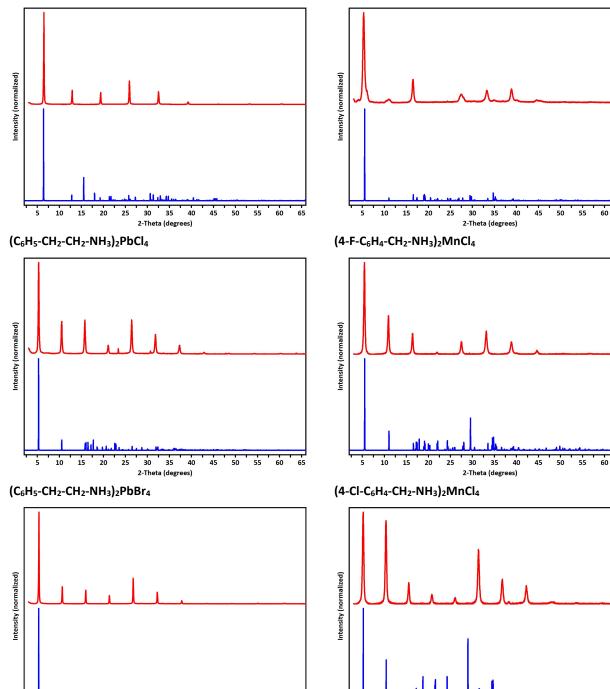




Figure S6. Atomic force microscopy images and height profiles showing lateral dimensions and thicknesses of different $(C_6H_5-CH_2-CH_2-NH_3)_2PbBr_4$ perovskite nanoplatelets.

(C₆H₅-CH₂-NH₃)₂MnCl₄

65

65

65

60

Figure S7. Powder X-ray diffraction patterns obtained by experimental measurements of spin-coated and dried thin films of colloidal liquid crystalline dispersions of perovskite nanoplatelets (upper red curves) and by simulations based on corresponding single-crystal X-ray diffraction data (lower blue curves).

10

15 20 25 30

5

35 40

2-Theta (degrees)

45 50 55

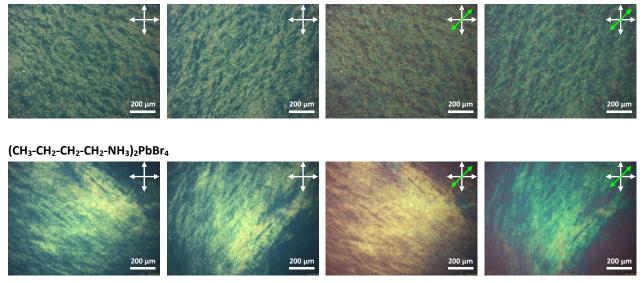
65

45 50 55 60

35 40

2-Theta (degrees)

30


10

15 20

5

25

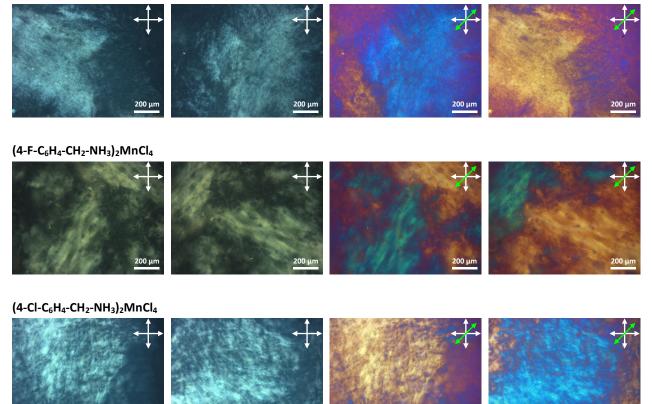

(C₆H₅-CH₂-CH₂-NH₃)₂PbCl₄

Figure S8. Polarized optical microscopy images showing the liquid crystalline phases formed by colloidal nanoplatelets of two-dimensional lead(II) halide perovskites. These samples were observed between two perpendicularly oriented linear polarizers (the left two columns) and with a 530-nm full-wavelength retardation plate (the right two columns).

(C₆H₅-CH₂-NH₃)₂MnCl₄

200 µm

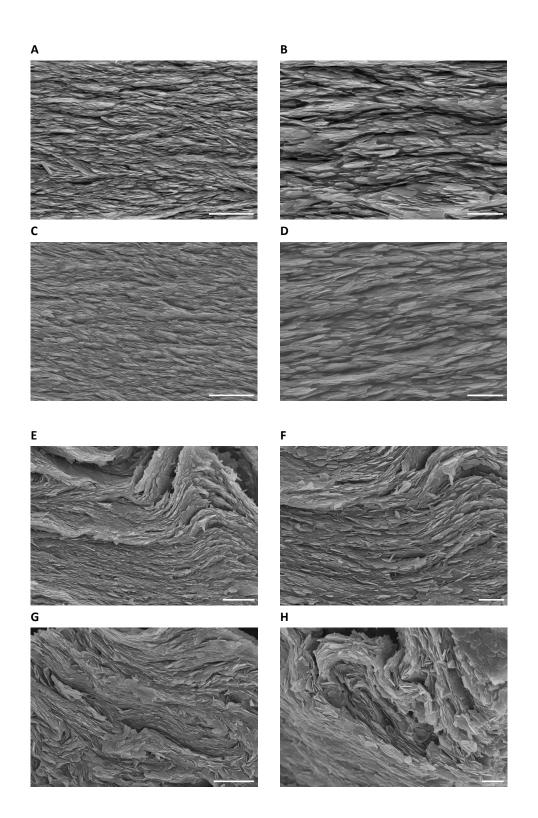
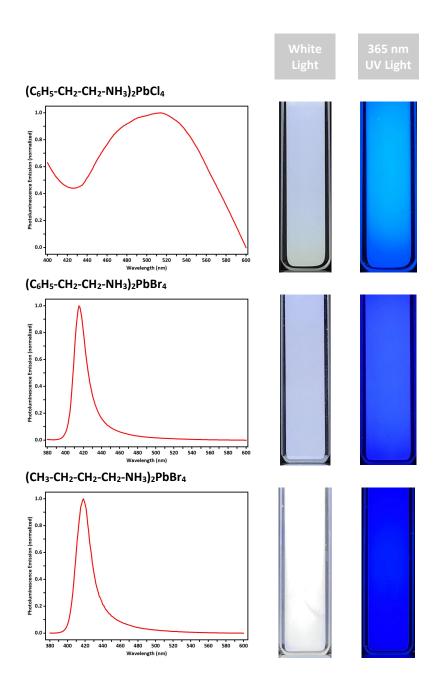


Figure S9. Polarized optical microscopy images showing the liquid crystalline phases formed by colloidal nanoplatelets of two-dimensional organic-inorganic manganese(II) chloride perovskites. In the left two columns, the samples were observed between two perpendicularly oriented linear polarizers; in the right two columns, a 530-nm full-wavelength retardation plate was inserted into the optical path.


200 µm

200 µm

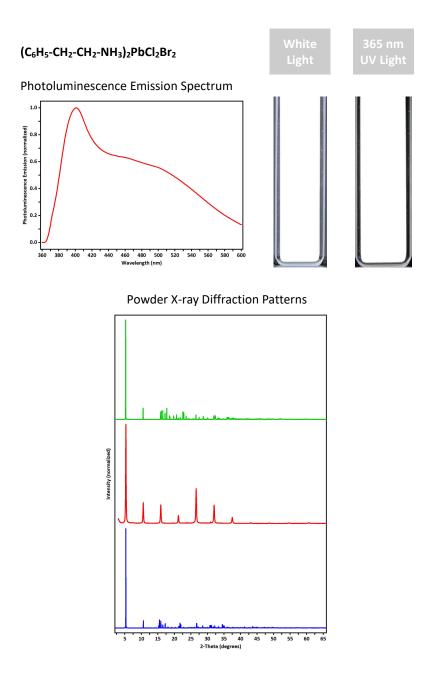

200 µn

Figure S10. Cross-sectional scanning electron microscopy images showing the discotic nematic liquid crystalline phases formed by colloidal nanoplatelets of $(C_6H_5-CH_2-CH_2-NH_3)_2PbBr_4$ (**A-D**) and $(4-F-C_6H_4-CH_2-NH_3)_2MnCl_4$ (**E-H**). Scale bars: 5 µm (**A**,**C**,**E**,**G**), 2 µm (**B**,**D**,**F**,**H**).

Figure S11. Photoluminescence emission spectra of the crystalline powders (red curves) and colloidal liquid crystalline dispersions (blue curves) of $(C_6H_5-CH_2-CH_2-NH_3)_2PbCl_4$, $(C_6H_5-CH_2-CH_2-NH_3)_2PbBr_4$, and $(CH_3-CH_2-CH_2-CH_2-NH_3)_2PbBr_4$. Photographs of these liquid crystals (sealed in quartz cuvettes with an internal width of 10 mm and an optical path length of 0.5 mm, observed under white light and 365-nm ultraviolet light) are displayed next to the spectra plots.

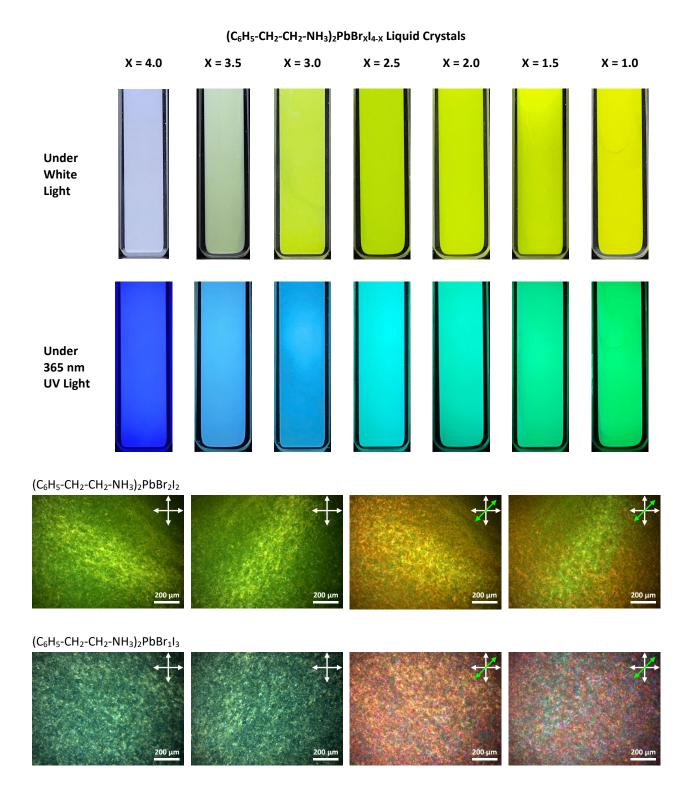
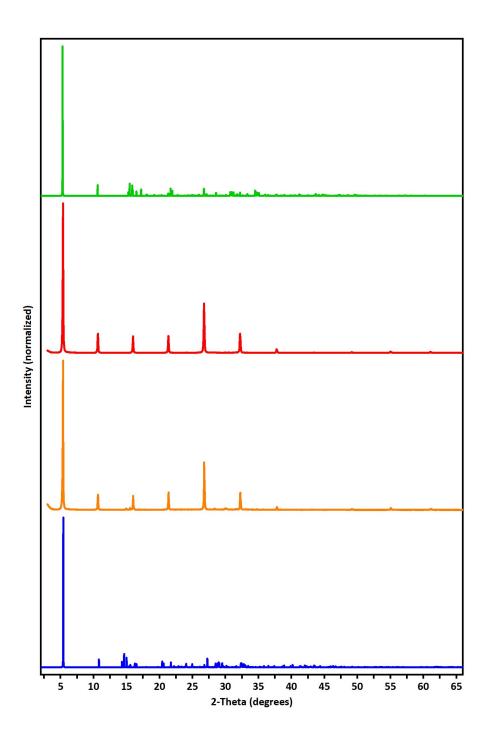
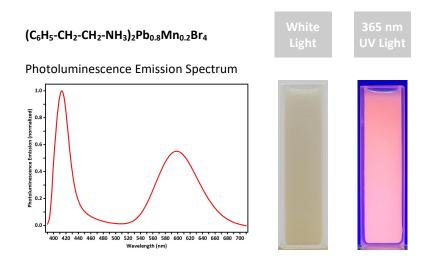


Figure S12. Additional data for liquid crystalline dispersions of (C₆H₅-CH₂-CH₂-NH₃)₂PbCl₂Br₂ perovskite nanocrystals:

(1) Photoluminescence emission spectrum.

(2) Photographs. The liquid crystal was sealed in a quartz cuvette with an internal width of 10 mm and an optical path length of 0.5 mm. The photos were taken under white light and 365-nm ultraviolet light.


(3) Powder X-ray diffraction pattern of a spin-coated and dried film of the liquid crystal (middle red curve). Simulated PXRD patterns (based on single-crystal X-ray diffraction profiles) of $(C_6H_5-CH_2-CH_2-NH_3)_2PbCl_4$ (upper green curve) and $(C_6H_5-CH_2-CH_2-NH_3)_2PbBr_4$ (lower blue curve) are also displayed for comparison.


Figure S13. Additional data for (C₆H₅-CH₂-CH₂-NH₃)₂PbBr_xI_{4-x} liquid crystals:

(1) Photographs. The liquid crystal was sealed in a quartz cuvette with an internal width of 10 mm and an optical path length of 0.5 mm. The photos were taken under white light and 365-nm ultraviolet light.

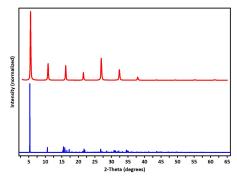

(2) Polarized optical microscopy images.

Figure S14. Powder X-ray diffraction patterns of spin-coated and dried films of colloidal liquid crystalline dispersions of $(C_6H_5-CH_2-CH_2-NH_3)_2PbBr_2I_2$ (red-colored curve) and $(C_6H_5-CH_2-CH_2-NH_3)_2PbBr_1I_3$ (orange-colored curve) perovskites. Simulated PXRD patterns (based on single-crystal X-ray diffraction profiles) of $(C_6H_5-CH_2-CH_2-NH_3)_2PbBr_4$ (green-colored curve at the top) and $(C_6H_5-CH_2-CH_2-NH_3)_2PbI_4$ (blue-colored curve at the bottom) are also displayed for comparison.

Powder X-ray Diffraction Patterns

Polarized Optical Microscopy Images

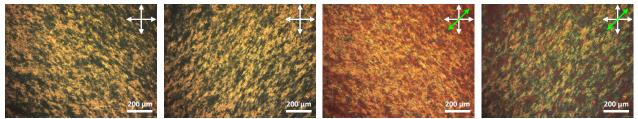


Figure S15. Additional data for (C₆H₅-CH₂-CH₂-NH₃)₂Pb_{0.8}Mn_{0.2}Br₄ perovskite liquid crystals:

(1) Photoluminescence emission spectrum.

(2) Photographs. The liquid crystal was sealed in a quartz cuvette with an internal width of 10 mm and an optical path length of 0.5 mm. The photos were taken under white light and 365-nm ultraviolet light.

(3) Powder X-ray diffraction pattern of a spin-coated and dried film of the liquid crystal (red curve). The simulated

PXRD pattern (based on single-crystal XRD data) of (C₆H₅-CH₂-CH₂-NH₃)₂PbBr₄ (blue curve) is displayed for comparison.

(4) Polarized optical microscopy images.

Figure S16. Linearly polarized photoluminescence (the left column) and polarization-dependent light-responsiveness (the right column) of colloidal liquid crystalline dispersions of (C₆H₅-CH₂-CH₂-NH₃)₂PbCl₄, (C₆H₅-CH₂-CH₂-NH₃)₂PbCl₂Br₂, (C₆H₅-CH₂-CH₂-NH₃)₂PbBr₂I₂, and (C₆H₅-CH₂-CH₂-NH₃)₂PbBrI₃ perovskite nanoplatelets (from top to bottom).

 Table S1. Degree of polarization values of colloidal liquid crystalline dispersions of perovskite nanoplatelets.

	Polarized Photoluminescence Light Emission	Polarization-Dependent Light-Responsiveness
(C ₆ H ₅ -CH ₂ -CH ₂ -NH ₃) ₂ PbCl ₄	0.12	0.32
(C ₆ H ₅ -CH ₂ -CH ₂ -NH ₃) ₂ PbCl ₂ Br ₂	0.06	0.22
(C ₆ H ₅ -CH ₂ -CH ₂ -NH ₃) ₂ PbBr ₂ I ₂	0.10	0.27
(C ₆ H ₅ -CH ₂ -CH ₂ -NH ₃) ₂ PbBr ₁ I ₃	0.08	0.24