Supporting Information

Title: Metabolomics Based Predictive Biomarkers of Oral Cancer and its Severity in *Human* Patients from North India Using Saliva

Supplementary contents:

Table of content:

-Table S1 Metabolites resulted from saliva sample patients using NMR spectroscopy.

-Table S2. Cross Validation of the multivariate O-PLS-DA model using 5-Fold and 10-Fold related to NMR spectroscopy on saliva sample of Oral Cancer patients.

-Table S3. ROC curve analysis of potential biomarkers in oral cancer.

-Table S4. Overview of enrichment metabolites.

-Table S5. Some Information about Different Metabolites.

- Figure S1A. shows a clinical case of Oral submucous Fibrosis (OSMF) of Grade 4 severity. Patient presents with a mouth opening of 3mm. **B**. Intraorally Loss of elasticity and leathery texture of the buccal mucosa, showing "marble -like "appearance of the oral mucosa and blanching of the mucosa is seen due to loss of normal pink color and appearance of white or pale mucosa. **C**. shows a clinical case of Oral squamous cell carcinoma (OSCC) of Stage 2 severity with a ulcer proliferative lesion on right alveolus of mandible (2 x3cm size) according to AJCC classification.

- Figure S2. Histopathological slide of OSCC & OSMF.

- Figure S3. 1D-NOESY 1H nuclear magnetic resonance spectra of human saliva samples from: oral cancer patient and healthy person. The spectra are acquired at 800 MHz and T = 310 K.

-Figure S4. 2D HSQC nuclear magnetic resonance spectra of saliva samples from oral cancer patient. The spectra are acquired at 800 MHz and T = 310 K.

-Figure S5. 2D COSY nuclear magnetic resonance spectra of saliva samples from oral cancer patient. The spectra are acquired at 800 MHz and T = 310 K.

-Figure S6. Data normalization by Pareto scaling and log transformation.

-Figure S7. A. Two-dimensional score plot of principal component analysis with red colour representing control and green patient from human Saliva. B. Biplot of principal component analysis.

-Figure S8. Boxplots show levels of differential metabolites in oral cancer and control individuals.

-Figure S9. Variables importance in projection (VIP).

-Figure S10. ROC curve analysis for the saliva specific metabolites level.

-Figure S11. A. Cross Validation of the multivariate O-PLS-DA model using 10-Fold related to NMR spectroscopy on saliva sample of Oral Cancer patients. **B.** Permutation test of the multivariate PLS-DA model using by separation distance based on sum of squares between and sum of squares within (B/W) ratio for NMR on saliva sample of Oral Cancer patients.

S. No.	Metabolites	Assignment	¹ H chemical shift (ppm) and multiplicity	¹³ C chemical shift (ppm)	CHEBI No
1	Acetone	CH ₃	2.22(s)	-	15347
2	Acetoacetate	CH ₃	2.29	-	13705
		CH_2	3.45(s)	-	
3	Adipic acid	CH_2	1.56	-	30832
		CH ₂ COOH	2.23		
4	Alanine	βCH_3	1.48(d)	19.00	15428
		αCH	3.78(q)	53.41	
5	Aspartic Acid	βCH_2	2.67	39.36	22660
		βCH_2	2.88	39.36	
		αCH	3.88(dd)	54.90	
6	Betaine	n-CH ₃	3.22(s)	56.68	91242

Table S1 Metabolites resulted from saliva sample patients using NMR spectroscopy.

		СН	3.89(s)	69.00	
		αCH	3.75	57.00	
7	Butyric acid	CH_2	1.68	-	30772
8	Creatine	CH ₃	3.03	39.72	<u>16919</u>
		CH_2	3.92	56.73	
9	Citrate	CH_2	2.48		30769
10	α-Glucose	C4H	3.40	72.48	<u>17634</u>
		C2H	3.54	74.10	
		СЗН	3.71	75.58	
		C6H	3.83	63.33	
		C5H	3.85	74.85	
11	β-Glucose	C4H	3.42	72.48	<u>17634</u>
		C2H	3.24	77.09	
		СЗН	3.49	78.24	
		C6H	3.74	63.99	
		C5H	3.48	78.66	
		C1H	4.65	98.78	
		C1H	5.24(d)	94.98	
12	Glutamate	βСН	2.06	29.87	<u>29985</u>
		, β′СН	2.13	29.87	
		γCH_2	2.35	36.16	
		αCH	3.78	44.32	
13	Histidine	C4H,ring	7.05	119.49	<u>15971</u>
		C2H,ring	7.77	13.07	
		αCH	3.99	57.50	
		βCH_2		30.013	
14	Ethanol	CH ₃	1.17(t)	19.48	<u>16236</u>
		CH	3.64	60.13	
15	Formate	CH	8.44	-	<u>15740</u>
16	Isoleucine	δCH_3	0.92(t)	13.83	<u>17191</u>
		βCH_3	0.99	17.41	
		γCH	1.25	27.18	
		γCH	1.45	27.18	
		βСН	1.96	38.81	
		αCH	3.65	63.40	
17	Leucine	δCH_3	0.92(t)	23.64	<u>15603</u>

		δ'CH ₃	0.99	24.93	
		γСН	1.25	27.05	
		βCH_2	1.45	42.65	
		αCH	1.96	56.10	
		CH	3.65	57.21	
18	Phenylalanine	βСН	3.14	39.40	<u>17295</u>
		β′СН	3.27	39.40	
		αCH	3.98	58.98	
		C2H, C6H ring	7.33	132.36	
		C4H, ring	7.36	130.42	
		C3H, C5H, ring	7.42	132.09	
19	Pyruvate	CH ₃	2.36	29.55	<u>15361</u>
20	Succinate	CH ₃	2.39	36.85	<u>30031</u>
21	Urea	CH2	5.78	-	<u>16199</u>
22	Tryptophan	СН	7.28	-	27897

Table S2. Cross Validation of the multivariate O-PLS-DA model using 5-Fold and 10-Fold relatedto NMR spectroscopy on saliva sample of Oral Cancer patients.

PLS-DA cross-validation related to polar extract using NMR spectroscopy

Measure using 5-fold	1 comps	2 comps	3 comps	4 comps	5 comps
Accuracy	0.96667	0.97778	0.97778	0.97778	0.97778
R2	0.87363	0.91066	0.93114	0.94082	0.95369
Q2	0.83169	0.88065	0.89608	0.8964	0.89953
Measure using 10-fold	1 comps	2 comps	3 comps	4 comps	5 comps
Measure using 10-fold Accuracy	1 comps 0.96667	2 comps 0.96668	3 comps 0.96668	4 comps 0.96778	5 comps 0.97889
Measure using 10-fold Accuracy R2	1 comps 0.96667 0.87363	2 comps 0.96668 0.91066	3 comps 0.96668 0.93114	4 comps 0.96778 0.94082	5 comps 0.97889 0.95369

Table S3. Cross Validation of the multivariate O-PLS-DA model using 5-Fold related to NMRspectroscopy on saliva sample of OSCC Stage 1 and OSCC stage 2.

PLS-DA cross-validation related to polar extract using NMR spectroscopy

Measure using 5-fold	1 comps	2 comps	3 comps	4 comps	5 comps
Accuracy	0.5	0.4	0.45	0.5	0.55
R2	0.52603	0.66583	0.81193	0.86076	0.92941
Q2	-0.42358	-0.20674	-0.42536	-0.6785	-0.80796

Table S4. ROC curve analysis of potential biomarkers in oral cancer.

Metabolites	AUC	t-TEST
Acetone	0.98123	2.2774 x10 ⁻²⁷
Tryptophan	0.95358	2.116399 x10 ⁻²¹
5-aminopentanoic acid	0.91506	9.1662 x10 ⁻¹³
Betaine	0.91506	6.1673 x10 ⁻¹²
Aspartic acid	0.90667	8.0693 x10 ⁻¹⁴
Ethanol	0.89778	7.7899 x10 ⁻⁷
Acetoacetate	0.89284	1.1811 x10 ⁻¹²
Adipic acid	0.8642	5.0659 x10 ⁻¹¹
Citrate	0.82963	9.6554 x10 ⁻⁸
Formate	0.75605	1.5455 x10 ⁻⁵

Phenylalanine	0.74519	4.344 x10 ⁻⁵
Butyric acid	0.73926	0.0063549
Imidazole	0.72	2.6841 x10 ⁻⁴
Creatine	0.66963	0.069028
Glutamic acid	0.66469	5.4578 x10 ⁻⁴
Succinic acid	0.63556	0.030161
Alanine	0.6237	0.10795
Histidine	0.60988	0.62005
Propionic acid	0.6	0.95428
Glucose	0.57975	0.061482
Leucine	0.55802	0.94562
Isoleucine	0.54222	0.22714
Pyruvate	0.53481	0.75944
Hypoxanthine	0.52741	0.93639
Galactose	0.50272	0.3261

Table S5. Overview of enrichment metabolites.

Metabolite Set	Hits	Expect	P value	FDR
Ketone Body Metabolism	3	0.259	0.00172	0.0841
Glucose-Alanine Cycle	3	0.259	0.00172	0.0841
Ammonia Recycling	4	0.619	0.00257	0.0841
Warburg Effect	5	1.14	0.00401	0.0879
Valine, Leucine and Isoleucine Degradation	5	1.18	0.00467	0.0879
Butyrate Metabolism	3	0.379	0.00538	0.0879
Transfer of Acetyl Groups into Mitochondria	3	0.439	0.00823	0.115
Lactose Degradation	2	0.18	0.0125	0.127
Glutamate Metabolism	4	0.958	0.0128	0.127
Phenylalanine and Tyrosine Metabolism	3	0.539	0.0147	0.127

Malate-Aspartate Shuttle	2	0.2	0.0155	0.127
Urea Cycle	3	0.559	0.0162	0.127
Arginine and Proline Metabolism	4	1.04	0.0168	0.127
Citric Acid Cycle	3	0.639	0.0233	0.163
Glycine and Serine Metabolism	4	1.18	0.0258	0.168
Beta-Alanine Metabolism	3	0.679	0.0274	0.168
Alanine Metabolism	2	0.339	0.043	0.248
Glycolysis	2	0.459	0.0745	0.4
Methylhistidine Metabolism	1	0.0798	0.0776	0.4
Cysteine Metabolism	2	0.519	0.0924	0.453

 Table S6. Some Information about Different Metabolites.

Metabolites	p value	FC	log2(FC)
Acetone	2.28 x 10 ⁻²⁷	0.090688	2.5262
Tryptophan	2.12 x 10 ⁻²¹	0.16163	1.7826
Aspartic acid	8.07 x 10 ⁻¹⁴	2.9824	1.2325
5-aminopentanoic acid	9.17 x 10 ⁻¹³	2.6951	1.2526
Acetoacetate	1.18 x 10 ⁻¹²	0.44268	1.1707
Betaine	6.17 x 10 ⁻¹²	2.445	1.2279
Adipic acid	5.07 x 10 ⁻¹¹	0.46772	1.0809
Formate	0.0000155	16.488	1.5122
Glutamic acid	0.00054578	0.24188	0.85171
Butyric acid	0.0063549	2.7133	0.89558

Figure S1A. shows a clinical case of Oral submucous Fibrosis (OSMF) of Grade 4 severity. Patient presents with a mouth opening of 3mm. **B**. Intraorally Loss of elasticity and leathery texture of the buccal mucosa, showing "marble -like "appearance of the oral mucosa and blanching of the mucosa is seen due to loss of normal pink color and appearance of white or pale mucosa. **C**. shows a clinical case of Oral squamous cell carcinoma (OSCC) of Stage 2 severity with a ulcer proliferative lesion on right alveolus of mandible (2 x3cm size) according to AJCC classification.

Figure S2. Histopathological slide of OSCC & OSMF

OSCC

OSMF

Figure S3. 1D-cpmgpr 1H nuclear magnetic resonance spectra of saliva samples from oral cancer patient. The spectra are acquired at 800 MHz and T = 310 K.

Figure S4. 2D HSQC nuclear magnetic resonance spectra of saliva samples from oral cancer patient. The spectra are acquired at 800 MHz and T = 310 K.

Figure S5. 2D COSY nuclear magnetic resonance spectra of saliva samples from oral cancer patient. The spectra are acquired at 800 MHz and T = 310 K.

Figure S6. Data normalization by Pareto scaling and log transformation.

Data normalization before statistical analysis data was Pareto scaled and log transformed to minimize both the induced and uninduced discrepancy within the data to obtain Gaussian distribution for better interpretation of results.

- Figure S7. A. Two-dimensional score plot of principal component analysis with red colour representing Patient and green Control from human Saliva with [PERMANOVA] F-value: 44.674; R-squared: 0.33672; p-value (based on 999 permutations): 0.001 **B.** Biplot of principal component analysis.

- **Figure S8. A.** Two-dimensional score plot of principal component analysis with red colour representing OSCC Stage 2 and green OSCC Stage 1 from human Saliva with [PERMANOVA] F-value: 0.23925; R-squared: 0.013117; p-value (based on 999 permutations): 0.799 **B.** Biplot of principal component analysis.

-Figure S9. A. Cross Validation of the multivariate O-PLS-DA model using 5-Fold related to NMR spectroscopy on saliva sample of OSCC Stage 1 & OSCC Stage 2. **B.** Permutation test of the multivariate PLS-DA model using by separation distance based on sum of squares between and sum of squares within (B/W) ratio for NMR on saliva sample OSCC Stage 1 & OSCC Stage 2.

-Figure S10. Boxplots showing levels of differential metabolites in oral cancer and control individuals.

-Figure S11. Variables importance in projection (VIP).

Metabolites depicted significant with a cutoff score ≥ 1

VIP scores

-Figure S12. ROC curve analysis for the saliva specific metabolites level.

1-Specificity (False positive rate)

-Figure S13. A. Cross Validation of the multivariate O-PLS-DA model using 10-Fold related to NMR spectroscopy on saliva sample of Oral Cancer patients. **B.** Permutation test of the multivariate PLS-DA model using by separation distance based on sum of squares between and sum of squares within (B/W) ratio for NMR on saliva sample of Oral Cancer patients.

