## **Supplementary Information**

## Unmasking the Lipid Landscape: Carbamazepine's Induces Alterations in Leydig Cells Lipidome

Inês Nobre <sup>a,b,c</sup>, Ana D. Martins <sup>b,d</sup>, Inês M. S. Guerra <sup>a,b</sup>, Marisa Pinho <sup>a</sup>, Laura Goracci <sup>e</sup>, Stefano Bonciarelli <sup>e</sup>, Tânia Melo <sup>a,b</sup>, Pedro Domingues <sup>b</sup>, Artur Paiva <sup>f,g,h</sup>, Pedro F. Oliveira <sup>b,d</sup>, and M. Rosário Domingues \*<sup>a,b</sup>

<sup>a</sup> CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal

<sup>b</sup> Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal

° Serviço Patologia Clínica, ULS Coimbra, 3004-561 Coimbra, Portugal

<sup>d</sup> LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

<sup>e</sup> Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy

<sup>f</sup> Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), 3004-561 Coimbra, Portugal

<sup>g</sup> Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-370 Coimbra, Portugal

<sup>h</sup> Ciências Biomédicas Laboratoriais, ESTESC - Coimbra Health School, Instituto Politécnico de Coimbra, 3046-854 Coimbra, Portugal

Corresponding author: Rosário Domingues\*

Address reprint requests to: Rosário Domingues, Lipidomic laboratory, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (PORTUGAL) Phone: +351 234 370698 Fax: +351 234 370084 E-mail: mrd@ua.pt

## Table of contents:

Supplementary Table S1. Significant variation between the FA identified by GC-MS from Leydig cells treated with 25  $\mu$ M or 200  $\mu$ M of CBZ and control groups.

Supplementary Table S2. Significant variation between the  $\Sigma$  FA identified by GC-MS from Leydig cells treated with 25  $\mu$ M or 200  $\mu$ M of CBZ and control groups.

**Supplementary Table S3.** Phospholipids and sphingolipids identified by LC-MS and MS/MS of phospholipid (PL)enriched extracts obtained from Leydig cells treated with 25  $\mu$ M of CBZ, Leydig cells treated with 200  $\mu$ M of CBZ and Leydig cells without CBZ (controls) (mass error <5 ppm).

**Supplementary Table S4.** Univariate analysis of the LC-MS data showing significant variation between Leydig cells treated with CBZ and control groups.

**Supplementary Figure S1.** Graphical representation of fatty acid profile obtained from Leydig cells, determined by GC-MS.

Supplementary Figure S2. Graphical representation of  $\Sigma$  fatty acid profile obtained from Leydig cells, determined by GC-MS.

Supplementary Figure S3. Representative MS/MS spectra of phosphatidylcholine (PC) lipid species.

Supplementary Figure S4. Representative MS/MS spectra of sphingomyelin (SM) lipid species.

Supplementary Figure S5. Representative MS/MS spectra of phosphatidylethanolamine (PE) lipid species.

Supplementary Figure S6. Representative MS/MS spectrum of phosphatidylglycerol (PG) lipid species.

Supplementary Figure S7. Representative MS/MS spectrum of phosphatidylinositol (PI) lipid species.

Supplementary Figure S8. Representative MS/MS spectrum of phosphatidylserine (PS) lipid species.

Supplementary Figure S9. Representative MS/MS spectrum of ceramide (Cer) lipid species.

Supplementary Figure S10. Representative MS/MS spectrum of cardiolipin (CL) lipid species.

**Supplementary Table S1.** Significant variations between the FA identified by GC-MS from Leydig cells treated with 25  $\mu$ M or 200  $\mu$ M CBZ and CTR groups, sorted by increasing number of carbon atoms and double bonds. Significant differences (*p*-values<0.05) between the groups revealed by Two-way ANOVA and Tukey's multiple comparisons test are marked with \* if *p*<0.05 and ns-not significant.

| Tukey's multiple comparisons test | <i>p</i> -value     | Statistical<br>significance<br>level |
|-----------------------------------|---------------------|--------------------------------------|
|                                   | FA 14:0             |                                      |
| CTR vs. 25 μΜ                     | 0.9598              | ns                                   |
| CTR vs. 200 μM                    | 0.6971              | ns                                   |
| 25 μM vs. 200 μM                  | 0.8531              | ns                                   |
|                                   | FA 16:0             |                                      |
| CTR vs. 25 μΜ                     | 0.9998              | ns                                   |
| CTR vs. 200 μM                    | 0.9998              | ns                                   |
| 25 μM vs. 200 μM                  | >0.9999             | ns                                   |
|                                   | FA 16:1 <i>n</i> -9 |                                      |
| CTR vs. 25 μΜ                     | 0.9219              | ns                                   |
| CTR vs. 200 μΜ                    | 0.2251              | ns                                   |
| 25 μM vs. 200 μM                  | 0.1052              | ns                                   |
|                                   | FA 16:1 <i>n</i> -7 |                                      |
| CTR vs. 25 μΜ                     | 0.9458              | ns                                   |
| CTR vs. 200 μM                    | 0.8457              | ns                                   |
| 25 μM vs. 200 μM                  | 0.9704              | ns                                   |
|                                   | FA 18:0             |                                      |
| CTR vs. 25 μΜ                     | 0.9996              | ns                                   |
| CTR vs. 200 μΜ                    | 0.9939              | ns                                   |
| 25 μM vs. 200 μM                  | 0.9906              | ns                                   |
|                                   | FA 18:1 <i>n</i> -9 |                                      |
| CTR vs. 25 μΜ                     | 0.9956              | ns                                   |
| CTR vs. 200 μΜ                    | 0.9973              | ns                                   |
| 25 μM vs. 200 μM                  | 0.9998              | ns                                   |
|                                   | FA 18:1 <i>n</i> -7 |                                      |
| CTR vs. 25 μΜ                     | 0.9998              | ns                                   |
| CTR vs. 200 μΜ                    | 0.9985              | ns                                   |
| 25 μM vs. 200 μM                  | 0.9995              | ns                                   |
|                                   | FA 18:2 <i>n</i> -6 |                                      |
| CTR vs. 25 μΜ                     | 0.9099              | ns                                   |
| CTR vs. 200 μM                    | 0.8682              | ns                                   |
| 25 μM vs. 200 μM                  | 0.6278              | ns                                   |
|                                   | FA 20:4 <i>n</i> -6 |                                      |
| CTR vs. 25 μΜ                     | 0.604               | ns                                   |
| CTR vs. 200 μΜ                    | 0.9991              | ns                                   |
| 25 μM vs. 200 μM                  | 0.5779              | ns                                   |
|                                   | FA 22:4 <i>n</i> -6 |                                      |

| CTR vs. 25 μΜ       | 0.8648 | ns |  |  |  |  |  |
|---------------------|--------|----|--|--|--|--|--|
| CTR vs. 200 μΜ      | 0.9509 | ns |  |  |  |  |  |
| 25 μM vs. 200 μM    | 0.9757 | ns |  |  |  |  |  |
| FA 22:5 <i>n</i> -3 |        |    |  |  |  |  |  |
| CTR vs. 25 μΜ       | 0.9371 | ns |  |  |  |  |  |
| CTR vs. 200 μΜ      | 0.9998 | ns |  |  |  |  |  |
| 25 μM vs. 200 μM    | 0.93   | ns |  |  |  |  |  |
| FA 22:              | 6 n-3  |    |  |  |  |  |  |
| CTR vs. 25 μΜ       | 0.965  | ns |  |  |  |  |  |
| CTR vs. 200 μΜ      | 0.0538 | ns |  |  |  |  |  |
| 25 μM vs. 200 μM    | 0.0278 | *  |  |  |  |  |  |
|                     |        |    |  |  |  |  |  |

**Supplementary Table S2.** Significant variations between the  $\Sigma$  FA identified by GC-MS from Leydig cells treated with 25  $\mu$ M or 200  $\mu$ M CBZ and CTR groups, sorted by increasing number of carbon atoms and double bonds. Significant differences (*p*-values<0.05) between the groups revealed by Two-way ANOVA and Tukey's multiple comparisons test are marked with \*\*\* if *p*<0.001. ns-not significant.

| Tukey's multiple comparisons test | <i>p</i> -value | Statistical<br>significance<br>level |
|-----------------------------------|-----------------|--------------------------------------|
| Σ n-3                             |                 |                                      |
| CTR vs. 25 μM                     | 0.9981          | ns                                   |
| CTR vs. 200 μM                    | 0.1346          | ns                                   |
| 25 μM vs. 200 μM                  | 0.1518          | ns                                   |
| Σ <i>n</i> -6                     |                 |                                      |
| CTR vs. 25 μM                     | 0.1576          | ns                                   |
| CTR vs. 200 μM                    | 0.9936          | ns                                   |
| 25 μM vs. 200 μM                  | 0.1265          | ns                                   |
| n-6/n-3                           |                 |                                      |
| CTR vs. 25 μM                     | 0.1769          | ns                                   |
| CTR vs. 200 μM                    | 0.1071          | ns                                   |
| 25 μM vs. 200 μM                  | 0.0005          | ***                                  |
| ΣSFA                              |                 |                                      |
| CTR vs. 25 μM                     | >0.9999         | ns                                   |
| CTR vs. 200 μM                    | 0.996           | ns                                   |
| 25 μM vs. 200 μM                  | 0.995           | ns                                   |
| Σ MUFA                            |                 |                                      |
| CTR vs. 25 μM                     | >0.9999         | ns                                   |
| CTR vs. 200 μM                    | >0.9999         | ns                                   |
| 25 μM vs. 200 μM                  | 0.9999          | ns                                   |
| Σ ΡυξΑ                            |                 |                                      |
| CTR vs. 25 μM                     | 0.7285          | ns                                   |
| CTR vs. 200 μΜ                    | 0.9001          | ns                                   |
| 25 μM vs. 200 μM                  | 0.9445          | ns                                   |
|                                   |                 |                                      |

**Supplementary Table S3.** Lipid molecular species identified by LC-MS and MS/MS in Leydig cells treated with 25 µM or 200 µM CBZ and in control group. The 'O-' prefix is used for plasmanyl species to indicate the presence of an alkyl ether substituent, whereas the 'P-' prefix is used for plasmenyl species to indicate the alk-1-enyl ether substituent. Lipid class **Abbreviations:** Cer, ceramide; PC, phosphatidylcholine; LPC, lysophosphatidylcholine; SM, sphingomyelin; PE, phosphatidylethanolamine; LPE, lysophosphatidylethanolamine; PG, phosphatidylglycerol; LPG, lysophosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine. C-total of carbon atoms in fatty acids; N-number of double bonds; \*identified based on exact mass measurements and retention time, no loss of the polar head group and FA acyl-chain fragments observed.

| Lipid specie<br>(C:N)                              | Observed <i>m/z</i> | Theoretical <i>m/z</i> | Error (ppm)       | Fatty acyl chain(s)<br>C:N | Formula   |  |
|----------------------------------------------------|---------------------|------------------------|-------------------|----------------------------|-----------|--|
|                                                    |                     | Cer and HexCer ide     | ntified as [M+H]⁺ |                            |           |  |
| Cer 34:0;02                                        | 540.5343            | 540.5350               | 1.4               | 16:0;02_18:0               | C34H69NO3 |  |
| Cer 34:1;02                                        | 538.5186            | 538.5194               | 1.5               | 16:0;02_18:1               | C34H67NO3 |  |
| Cer 34:2;02                                        | 536.5029            | 536.5037               | 1.5               | 16:0;02_18:2               | C34H65NO3 |  |
| Cer 40:1;02                                        | 622.6134            | 622.6133               | 0.2               | 18:1;02_22:0               | C40H79NO3 |  |
| Cer 40:2;02                                        | 620.5977            | 620.5976               | 0.1               | 18:1;02_22:1               | C40H77NO3 |  |
| Cer 41:1;02                                        | 636.6292            | 636.6289               | 0.4               | 18:1;02_23:0               | C41H81NO3 |  |
| Cer 41:2;02                                        | 634.6133            | 634.6133               | 0                 | 18:1;02_23:1               | C41H79NO3 |  |
| Cer 42:1;02                                        | 650.6444            | 650.6446               | 0.2               | 18:1;02_24:0               | C42H83NO3 |  |
| Cer 42:2;02                                        | 648.6290            | 648.6289               | 0.2               | 18:1;02_24:1               | C42H81NO3 |  |
| Cer 43:1;02                                        | 664.6606            | 664.6602               | 0.6               | 18:1;02_25:0               | C43H85NO3 |  |
| Cer 43:2;02                                        | 662.6453            | 662.6446               | 1.2               | 18:1;02_25:1               | C43H83NO3 |  |
| Cer 44:2;02                                        | 676.6610            | 676.6602               | 1.1               | 18:1;02_26:1               | C44H85NO3 |  |
| HexCer 34:1;O2                                     | 700.5706            | 700.5722               | 2.2               | 16:0;02_18:1               | C40H77NO8 |  |
| HexCer 42:2;O2                                     | 810.6812            | 810.6817               | 0.7               | 18:1;02_24:1               | C48H91NO8 |  |
| HexCer 40:1;O2                                     | 784.6652            | 784.6661               | 1.2               | 18:1;02_22:0               | C46H89NO8 |  |
| HexCer 42:1;O2                                     | 812.6969            | 812.6974               | 0.7               | 18:1;02_24:0               | C48H93NO8 |  |
| Coenzyme identified as [M+H] <sup>+</sup>          |                     |                        |                   |                            |           |  |
| Coenzyme Q10                                       | 863.6899            | 863.6912               | 1.4               | *                          | C59H90O4  |  |
| DG identified as [M+NH <sub>4</sub> ] <sup>+</sup> |                     |                        |                   |                            |           |  |
| DG 34:1                                            | 612.5560            | 612.5562               | 0.3               | 16:0_18:1                  | C37H70O5  |  |
| DG 36:2                                            | 638.5715            | 638.5718               | 0.4               | 18:1_18:1                  | C39H72O5  |  |

| DG 36:4   | 634.5392 | 634.5405                     | 2.1                     | 16:0_20:4               | C39H68O5   |
|-----------|----------|------------------------------|-------------------------|-------------------------|------------|
| DG 38:4   | 662.5717 | 662.5718                     | 0.1                     | 18:0_20:4               | C41H72O5   |
| DG 38:5   | 660.5551 | 660.5562                     | 1.6                     | 16:0_22:5               | C41H70O5   |
| DG 38:6   | 658.5394 | 658.5405                     | 1.7                     | 16:0_22:6               | C41H68O5   |
| DG 40:5   | 688.5861 | 688.5875                     | 1.9                     | 18:0_22:5               | C43H74O5   |
| DG 40:6   | 686.5708 | 686.5718                     | 1.5                     | 18:0_22:6               | C43H72O5   |
|           |          | LPC identified               | as [M+H] <sup>+</sup>   |                         |            |
|           | (det     | ermination of fatty acyl cha | ins by MS/MS of [M+HCOO | D]-)                    |            |
| LPC 16:0  | 496.3393 | 496.3398                     | 1                       | 16:0                    | C24H50NO7P |
| LPC 16:1  | 494.3236 | 494.3241                     | 1.1                     | *                       | C24H48NO7P |
| LPC 18:0  | 524.3709 | 524.3711                     | 0.3                     | 18:0                    | C26H54NO7P |
| LPC 18:1  | 522.3551 | 522.3554                     | 0.5                     | *                       | C26H52NO7P |
|           |          | PC identified                | as [M+H]⁺               |                         |            |
|           | (det     | ermination of fatty acyl cha | ins by MS/MS of [M+HCOO | D]-)                    |            |
| PC 28:1   | 676.4916 | 676.4912                     | 0.6                     | *                       | C36H70NO8P |
| PC 30:0   | 706.5369 | 706.5381                     | 1.7                     | 14:0_16:0               | C38H76NO8P |
| PC 30:1   | 704.5218 | 704.5225                     | 1                       | 14:0_16:1               | C38H74NO8P |
| PC 31:0_A | 720.5528 | 720.5538                     | 1.4                     | *                       | C39H78NO8P |
| PC 31:0_B | 720.5526 | 720.5538                     | 1.6                     | 15:0_16:0               | C39H78NO8P |
| PC 31:1   | 718.5374 | 718.5381                     | 1                       | *                       | C39H76NO8P |
| PC 32:0   | 734.5682 | 734.5694                     | 1.7                     | 16:0_16:0               | C40H80NO8P |
| PC 32:1   | 732.5527 | 732.5538                     | 1.4                     | *                       | C40H78NO8P |
| PC 32:2_A | 730.5375 | 730.5381                     | 0.8                     | 16:1_16:1               | C40H76NO8P |
| PC 32:2_B | 730.5356 | 730.5381                     | 3.4                     | *                       | C40H76NO8P |
| PC 33:0   | 748.5838 | 748.5851                     | 1.7                     | *                       | C41H82NO8P |
| PC 33:1   | 746.5685 | 746.5694                     | 1.2                     | 15:0_18:1 and 16:0_17:1 | C41H80NO8P |
| PC 33:2_A | 744.5530 | 744.5538                     | 1.1                     | 16:1_17:1               | C41H78NO8P |
| PC 33:2_B | 744.5517 | 744.5538                     | 2.9                     | *                       | C41H78NO8P |
| PC 34:0   | 762.5983 | 762.6007                     | 3.1                     | *                       | C42H84NO8P |

| PC 34:1       | 760.5839 | 760.5851 | 1.6 | 16:0_18:1               | C42H82NO8P |
|---------------|----------|----------|-----|-------------------------|------------|
| PC 34:2_A     | 758.5672 | 758.5694 | 2.9 | 16:1_18:1               | C42H80NO8P |
| PC 34:2_B     | 758.5678 | 758.5694 | 2.2 | *                       | C42H80NO8P |
| PC 34:3_A     | 756.5533 | 756.5538 | 0.7 | 12:0_22:3               | C42H78NO8P |
| PC 34:3_B     | 756.5532 | 756.5538 | 0.8 | *                       | C42H78NO8P |
| PC 34:3_C     | 756.5530 | 756.5538 | 1.1 | *                       | C42H78NO8P |
| PC 34:3_D     | 756.5521 | 756.5538 | 2.2 | *                       | C42H78NO8P |
| PC 34:4       | 754.5365 | 754.5381 | 2.2 | *                       | C42H76NO8P |
| PC 35:0       | 776.6134 | 776.6164 | 3.8 | *                       | C43H86NO8P |
| PC 35:1_A     | 774.5991 | 774.6007 | 2.1 | *                       | C43H84NO8P |
| PC 35:1_B     | 774.5996 | 774.6007 | 1.4 | *                       | C43H84NO8P |
| PC 35:2_A     | 772.5836 | 772.5851 | 1.9 | 16:1_19:1 and 17:1_18:1 | C43H82NO8P |
| РС 35:2_В     | 772.5823 | 772.5851 | 3.6 | *                       | C43H82NO8P |
| PC 35:3       | 770.5658 | 770.5694 | 4.8 | *                       | C43H80NO8P |
| PC 35:4       | 768.5524 | 768.5538 | 1.8 | *                       | C43H78NO8P |
| PC 36:1       | 788.6160 | 788.6164 | 0.5 | *                       | C44H86NO8P |
| PC 36:2       | 786.5984 | 786.6007 | 2.9 | 18:1_18:1               | C44H84NO8P |
| PC 36:3_A     | 784.5819 | 784.5851 | 4   | *                       | C44H82NO8P |
| PC 36:3_B     | 784.5833 | 784.5851 | 2.3 | *                       | C44H82NO8P |
| PC 36:3_C     | 784.5812 | 784.5851 | 4.9 | *                       | C44H82NO8P |
| PC 36:4       | 782.5667 | 782.5694 | 3.5 | *                       | C44H80NO8P |
| PC 36:5_A     | 780.5524 | 780.5538 | 1.8 | 16:1_20:4 and 14:0_22:5 | C44H78NO8P |
| <br>РС 36:5_В | 780.5528 | 780.5538 | 1.3 | *                       | C44H78NO8P |
| PC 36:6_A     | 778.5379 | 778.5381 | 0.3 | *                       | C44H76NO8P |
| PC 36:6_B     | 778.5375 | 778.5381 | 0.8 | *                       | C44H76NO8P |
| PC 36:7       | 776.5188 | 776.5225 | 4.7 | *                       | C44H74NO8P |
| PC 37:1       | 802.6310 | 802.632  | 1.3 | *                       | C45H88NO8P |
| PC 37:2_A     | 800.6147 | 800.6164 | 2.1 | 18:1_19:1               | C45H86NO8P |

| PC 37:2_B | 800.6149 | 800.6164 | 1.9 | *                                                   | C45H86NO8P |
|-----------|----------|----------|-----|-----------------------------------------------------|------------|
| PC 37:2_C | 800.6140 | 800.6164 | 2.9 | *                                                   | C45H86NO8P |
| PC 37:5   | 794.5685 | 794.5694 | 1.2 | *                                                   | C45H80NO8P |
| PC 37:6   | 792.5528 | 792.5538 | 1.2 | *                                                   | C45H78NO8P |
| PC 38:1   | 816.6464 | 816.6477 | 1.6 | 18:0_20:1                                           | C46H90NO8P |
| PC 38:2_A | 814.6297 | 814.632  | 2.9 | 18:1_20:1                                           | C46H88NO8P |
| PC 38:2_B | 814.6302 | 814.632  | 2.3 | *                                                   | C46H88NO8P |
| PC 38:3_A | 812.6128 | 812.6164 | 4.4 | 16:1_22:2 and 18:1_20:2 and 18:2_20:1 and 18:3_20:0 | C46H86NO8P |
| PC 38:3_B | 812.6149 | 812.6164 | 1.9 | 18:0_20:3                                           | C46H86NO8P |
| PC 38:4_A | 810.5988 | 810.6007 | 2.4 | 16:0_22:4 and 18:1_20:3                             | C46H84NO8P |
| PC 38:4_B | 810.5972 | 810.6007 | 4.4 | 18:0_20:4                                           | C46H84NO8P |
| PC 38:5_A | 808.5822 | 808.5851 | 3.5 | 18:1_20:4 and 16:0_22:5                             | C46H82NO8P |
| PC 38:5_B | 808.5824 | 808.5851 | 3.3 | 16:0_22:5 and 18:0_20:5 and 18:1_20:4               | C46H82NO8P |
| PC 38:6_A | 806.5690 | 806.5694 | 0.6 | *                                                   | C46H80NO8P |
| PC 38:6_B | 806.5681 | 806.5694 | 1.6 | 16:0_22:6                                           | C46H80NO8P |
| PC 38:7   | 804.5524 | 804.5538 | 1.7 | 16:1_22:6                                           | C46H78NO8P |
| PC 39:2   | 828.6465 | 828.6477 | 1.4 | *                                                   | C47H90NO8P |
| PC 39:3   | 826.6300 | 826.632  | 2.5 | *                                                   | C47H88NO8P |
| PC 39:4_A | 824.6126 | 824.6164 | 4.6 | *                                                   | C47H86NO8P |
| PC 39:4_B | 824.6128 | 824.6164 | 4.4 | *                                                   | C47H86NO8P |
| PC 39:5   | 822.5980 | 822.6007 | 3.3 | *                                                   | C47H84NO8P |
| PC 40:1   | 844.6779 | 844.679  | 1.2 | *                                                   | C48H94NO8P |
| PC 40:2   | 842.6617 | 842.6633 | 1.9 | 16:1_24:1 and 18:1_22:1 and 20:1/20:1               | C48H92NO8P |
| PC 40:3_A | 840.6455 | 840.6477 | 2.7 | 18:1_22:2 and 20:1_20:2                             | C48H90NO8P |
| PC 40:3_B | 840.6467 | 840.6477 | 1.2 | *                                                   | C48H90NO8P |
| PC 40:4_A | 838.6297 | 838.632  | 2.7 | *                                                   | C48H88NO8P |

| PC 40:4_B | 838.6297 | 838.632  | 2.8 | *                                                                                     | C48H88NO8P  |
|-----------|----------|----------|-----|---------------------------------------------------------------------------------------|-------------|
| PC 40:5_A | 836.6133 | 836.6164 | 3.7 | 18:0_22:5                                                                             | C48H86NO8P  |
| PC 40:5_B | 836.6141 | 836.6164 | 2.7 | 18:0_22:5                                                                             | C48H86NO8P  |
| PC 40:6_A | 834.5976 | 834.6007 | 3.7 | 18:1_22:5                                                                             | C48H84NO8P  |
| PC 40:6_B | 834.5981 | 834.6007 | 3.2 | 18:0_22:6 and 18:2_22:4 and<br>18:4_22:2 and 20:1_20:5 and<br>20:2_20:4 and 20:3/20:3 | C48H84NO8P  |
| PC 40:7_A | 832.5824 | 832.5851 | 3.3 | 18:1_22:6                                                                             | C48H82NO8P  |
| PC 40:7_B | 832.5811 | 832.5851 | 4.8 | *                                                                                     | C48H82NO8P  |
| PC 40:8   | 830.5676 | 830.5694 | 2.2 | *                                                                                     | C48H80NO8P  |
| PC 41:2   | 856.6778 | 856.679  | 1.4 | *                                                                                     | C49H94NO8P  |
| PC 41:6   | 848.6153 | 848.6164 | 1.3 | *                                                                                     | C49H86NO8P  |
| PC 41:7   | 846.5977 | 846.6007 | 3.5 | *                                                                                     | C49H84NO8P  |
| PC 42:1   | 872.7084 | 872.7103 | 2.1 | *                                                                                     | C50H98NO8P  |
| PC 42:10  | 854.5683 | 854.5694 | 1.3 | *                                                                                     | C50H80NO8P  |
| PC 42:2   | 870.6933 | 870.6946 | 1.6 | *                                                                                     | C50H96NO8P  |
| PC 42:3   | 868.6779 | 868.679  | 1.2 | *                                                                                     | C50H94NO8P  |
| PC 42:4_A | 866.6625 | 866.6633 | 1   | *                                                                                     | C50H92NO8P  |
| PC 42:4_B | 866.6627 | 866.6633 | 0.7 | *                                                                                     | C50H92NO8P  |
| PC 42:5_A | 864.6484 | 864.6477 | 0.8 | *                                                                                     | C50H90NO8P  |
| PC 42:5_B | 864.6482 | 864.6477 | 0.5 | *                                                                                     | C50H90NO8P  |
| PC 42:6   | 862.6295 | 862.632  | 2.9 | *                                                                                     | C50H88NO8P  |
| PC 42:7_A | 860.6134 | 860.6164 | 3.4 | *                                                                                     | C50H86NO8P  |
| PC 42:7_B | 860.6133 | 860.6164 | 3.6 | *                                                                                     | C50H86NO8P  |
| PC 42:8   | 858.5993 | 858.6007 | 1.6 | *                                                                                     | C50H84NO8P  |
| PC 44:2   | 898.7243 | 898.7259 | 1.8 | *                                                                                     | C52H100NO8P |
| PC 44:3   | 896.7087 | 896.7103 | 1.8 | *                                                                                     | C52H98NO8P  |
| PC 44:5   | 892.6782 | 892.679  | 0.9 | *                                                                                     | C52H94NO8P  |
| PC 44:6   | 890.6637 | 890.6633 | 0.4 | *                                                                                     | C52H92NO8P  |

| PC O-30:0             | 692.5576 | 692.5589 | 1.9 | O-14:0_16:0                 | C38H78NO7P |
|-----------------------|----------|----------|-----|-----------------------------|------------|
| PC O-30:1/PC P-30:0_A | 690.5421 | 690.5432 | 1.7 | *                           | C38H76NO7P |
| PC O-30:1/PC P-30:0_B | 690.5410 | 690.5432 | 3.3 | *                           | C38H76NO7P |
| PC O-31:0             | 706.5716 | 706.5745 | 4.1 | *                           | C39H80NO7P |
| PC O-32:0             | 720.5892 | 720.5902 | 1.4 | O-16:0_16:0                 | C40H82NO7P |
| PC 0-32:1_A           | 718.5726 | 718.5745 | 2.7 | *                           | C40H80NO7P |
| PC O-32:1_B           | 718.5736 | 718.5745 | 1.3 | O-16:0_16:1                 | C40H80NO7P |
| PC O-33:1/PC P-33:0_A | 732.5887 | 732.5902 | 2   | *                           | C41H82NO7P |
| PC O-33:1/PC P-33:0_B | 732.5879 | 732.5902 | 3   | *                           | C41H82NO7P |
| PC O-33:2/PC P-33:1   | 730.5731 | 730.5745 | 2   | *                           | C41H80NO7P |
| PC O-34:0             | 748.6197 | 748.6215 | 2.4 | *                           | C42H86NO7P |
| PC O-34:1/PC P-34:0_A | 746.6044 | 746.6058 | 2   | O-18:1_16:0 and P-18:0_16:0 | C42H84NO7P |
| PC O-34:1/PC P-34:0_B | 746.6042 | 746.6058 | 2.1 | *                           | C42H84N07P |
| PC O-34:2/PC P-34:1_A | 744.5887 | 744.5902 | 2   | *                           | C42H82NO7P |
| PC O-34:2/PC P-34:1_B | 744.5887 | 744.5902 | 2   | *                           | C42H82NO7P |
| PC O-34:3/PC P-34:2_A | 742.5728 | 742.5745 | 2.3 | *                           | C42H80NO7P |
| PC O-34:3/PC P-34:2_B | 742.5722 | 742.5745 | 3.1 | *                           | C42H80NO7P |
| PC O-35:2/PC P-35:1   | 758.6051 | 758.6058 | 0.9 | *                           | C43H84NO7P |
| PC O-36:1/PC P-36:0   | 774.6359 | 774.6371 | 1.5 | *                           | C44H88NO7P |
| PC O-36:2/PC P-36:1   | 772.6198 | 772.6215 | 2.1 | *                           | C44H86NO7P |
| PC O-36:3/PC P-36:2_A | 770.6035 | 770.6058 | 3   | *                           | C44H84N07P |
| PC O-36:3/PC P-36:2_B | 770.6043 | 770.6058 | 2   | *                           | C44H84NO7P |
| PC O-36:4/PC P-36:3   | 768.5887 | 768.5902 | 2   | *                           | C44H82NO7P |
| PC O-36:5/ PC P-36:4  | 766.5722 | 766.5745 | 3   | *                           | C44H80NO7P |
| PC O-35:1/PC P-35:0   | 782.6049 | 782.6058 | 1.2 | *                           | C45H84NO7P |
| PC O-38:2             | 800.6506 | 800.6528 | 2.8 | O-16:0_22:2                 | C46H90NO7P |
| PC O-38:3/PC P-38:2_A | 798.6339 | 798.6371 | 4.1 | *                           | C46H88NO7P |
| PC O-38:3/PC P-38:2_B | 798.6351 | 798.6371 | 2.5 | *                           | C46H88NO7P |

| PC O-38:4/PC P-38:3_A | 796.6198 | 796.6215      | 2.1         | *            | C46H86NO7P  |
|-----------------------|----------|---------------|-------------|--------------|-------------|
| PC O-38:4/PC P-38:3_B | 796.6193 | 796.6215      | 2.8         | *            | C46H86NO7P  |
| PC O-38:5/PC P-38:4_A | 794.6034 | 794.6058      | 3           | *            | C46H84N07P  |
| PC O-38:5/PC P-38:4_B | 794.6035 | 794.6058      | 2.9         | *            | C46H84NO7P  |
| PC O-38:5/PC P-38:4_C | 794.6024 | 794.6058      | 4.3         | *            | C46H84NO7P  |
| PC O-38:6/PC P-38:5   | 792.5881 | 792.5902      | 2.6         | *            | C46H82NO7P  |
| PC O-40:2/PC P-40:1   | 828.6826 | 828.6841      | 1.7         | *            | C48H94NO7P  |
| PC O-40:5/PC P-40:4_A | 822.6351 | 822.6371      | 2.5         | *            | C48H88NO7P  |
| PC O-40:5/PC P-40:4_B | 822.6355 | 822.6371      | 2           | *            | C48H88NO7P  |
| PC O-40:6/PC P-40:5   | 820.6189 | 820.6215      | 3.1         | *            | C48H86NO7P  |
| PC O-32:2/PC P-32:1   | 716.5572 | 716.5589      | 2.4         | *            | C40H78NO7P  |
| PC P-34:1             | 744.5889 | 744.5902      | 1.7         | P-16:0_18:1  | C42H82NO7P  |
| PC P-36:5_A           | 764.5580 | 764.5589      | 1.1         | *            | C44H78NO7P  |
| PC P-36:5_B           | 764.5587 | 764.5589      | 0.2         | *            | C44H78NO7P  |
| PC P-37:2             | 784.6207 | 784.6215      | 1           | *            | C45H86NO7P  |
| PC P-38:6             | 790.5723 | 790.5745      | 2.8         | *            | C46H80NO7P  |
| PC P-39:1             | 814.6685 | 814.6684      | 0           | *            | C47H92NO7P  |
| PC P-40:6             | 818.6034 | 818.6058      | 2.9         | *            | C48H84NO7P  |
|                       | •        | SM identified | l as [M+H]⁺ |              |             |
| SM 32:1;02            | 675.5444 | 675.5436      | 1.2         | *            | C37H75N2O6P |
| SM 33:1;02            | 689.5581 | 689.5592      | 1.5         | *            | C38H77N2O6P |
| SM 34:0;O2            | 705.5888 | 705.5905      | 2.4         | 16:0;O2_18:0 | C39H81N2O6P |
| SM 34:1;O3            | 719.5692 | 719.5698      | 0.8         | *            | C39H79N2O7P |
| SM 34:1;O2_A          | 703.5742 | 703.5749      | 0.9         | 18:1;O2_16:0 | C39H79N2O6P |
| SM 34:1;O2_B          | 703.5734 | 703.5749      | 2           | *            | C39H79N2O6P |
| SM 34:2;O2            | 701.5575 | 701.5592      | 2.4         | *            | C39H77N2O6P |
| SM 35:1;02            | 717.5893 | 717.5905      | 1.7         | *            | C40H81N2O6P |
| SM 36:1;02            | 731.6032 | 731.6062      | 4           | *            | C41H83N2O6P |

| SM 38:1;02    | 759.6362 | 759.6375       | 1.7                      | *                                 | C43H87N2O6P |
|---------------|----------|----------------|--------------------------|-----------------------------------|-------------|
| SM 40:0;02    | 789.6824 | 789.6844       | 2.5                      | *                                 | C45H93N2O6P |
| SM 40:1;O2_A  | 787.6675 | 787.6688       | 1.6                      | *                                 | C45H91N2O6P |
| SM 40:1;O2_B  | 787.6680 | 787.6688       | 1                        | 16:1;O2_24:0 and 18:1;O2_22:0     | C45H91N2O6P |
| SM 40:2;02    | 785.6526 | 785.6531       | 0.7                      | *                                 | C45H89N2O6P |
| SM 41:1;02    | 801.6840 | 801.6844       | 0.5                      | *                                 | C46H93N2O6P |
| SM 41:2;02    | 799.6681 | 799.6688       | 0.8                      | *                                 | C46H91N2O6P |
| SM 42:1;02    | 815.6994 | 815.7001       | 0.8                      | *                                 | C47H95N2O6P |
| SM 42:2;02    | 813.6838 | 813.6844       | 0.7                      | *                                 | C47H93N2O6P |
| SM 43:1;02    | 829.7162 | 829.7157       | 0.6                      | *                                 | C48H97N2O6P |
| SM 43:2;02    | 827.7000 | 827.7001       | 0                        | *                                 | C48H95N2O6P |
| SM 44:2;02    | 841.7148 | 841.7157       | 1.1                      | *                                 | C49H97N2O6P |
|               |          | SPB identified | d as [M+H]⁺              |                                   |             |
| SPB 16:0;02   | 274.2736 | 274.2741       | 1.7                      | 16:0;02                           | C16H35NO2   |
| SPB 16:1;02   | 272.2579 | 272.2584       | 2                        | 16:1;02                           | C16H33NO2   |
| SPB 18:0;O2_A | 302.3049 | 302.3054       | 1.5                      | 18:0;02                           | C18H39NO2   |
| SPB 18:0;O2_B | 302.3049 | 302.3054       | 1.5                      | 18:0;02                           | C18H39NO2   |
| SPB 18:0;O2_C | 302.3048 | 302.3054       | 1.7                      | 18:0;02                           | C18H39NO2   |
| SPB 18:1;02   | 300.2891 | 300.2897       | 2                        | 18:1;02                           | C18H37NO2   |
| SPB 20:0;O2   | 330.3359 | 330.3367       | 2.4                      | 20:0;02                           | C20H43NO2   |
|               |          | TG identified  | as [M+NH <sub>4</sub> ]+ |                                   |             |
| TG 40:0       | 712.6446 | 712.645        | 0.5                      | 12:0_12:0_16:0 and 12:0_14:0_14:0 | C43H82O6    |
| TG 42:0       | 740.6755 | 740.6763       | 1.1                      | 12:0_14:0_16:0                    | C45H86O6    |
| TG 44:1       | 766.6910 | 766.6919       | 1.1                      | 12:0_14:0_18:1 and 14:1_15:0_15:0 | C47H88O6    |
| TG 45:0       | 782.7222 | 782.7232       | 1.3                      | 13:0_15:0_17:0 and 14:0_15:0_16:0 | C48H92O6    |
| TG 46:0       | 796.7376 | 796.7389       | 1.6                      | 14:0_16:0_16:0 and 15:0_15:0_16:0 | C49H94O6    |
| TG 46:1       | 794.7222 | 794.7232       | 1.2                      | 14:0_14:0_18:1 and 14:1_16:0_16:0 | C49H92O6    |
| TG 46:2       | 792.7068 | 792.7076       | 1                        | 12:0_16:1_18:1 and 14:0_16:1_16:1 | C49H90O6    |

| TG 47:0 | 810.7534 | 810.7545 | 1.4 | 15:0_16:0_16:0 and 14:0_16:0_17:0<br>and 15:0_15:0_17:0                                                                                      | C50H96O6  |
|---------|----------|----------|-----|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| TG 47:1 | 808.7378 | 808.7389 | 1.4 | 14:0_15:0_18:1 and 14:0_16:0_17:1<br>and 14:0_16:1_17:0                                                                                      | C50H94O6  |
| TG 48:0 | 824.7690 | 824.7702 | 1.4 | 16:0_16:0_16:0                                                                                                                               | C51H98O6  |
| TG 48:1 | 822.7534 | 822.7545 | 1.4 | 16:0_16:0_16:1 and 14:0_16:0_18:1                                                                                                            | C51H96O6  |
| TG 48:2 | 820.7378 | 820.7389 | 1.2 | 14:0_16:1_18:1 and 14:1_16:0_18:1<br>and 14:0_16:0_18:2                                                                                      | C51H94O6  |
| TG 48:3 | 818.7226 | 818.7232 | 0.8 | 14:1_16:1_18:1 and 14:0_16:1_18:2                                                                                                            | C51H92O6  |
| TG 49:0 | 838.7844 | 838.7858 | 1.7 | 16:0_16:0_17:0 and 15:0_16:0_18:0<br>and 15:0_17:0_17:0 and<br>14:0_17:0_18:0                                                                | C52H100O6 |
| TG 49:1 | 836.7692 | 836.7702 | 1.2 | 15:0_16:0_18:1 and 16:0_16:0_17:1<br>and 16:0_16:1_17:0 and<br>14:0_16:0_19:1 and 14:0_17:0_18:1<br>and 15:0_15:0_19:1 and<br>15:0_16:1_18:0 | C52H98O6  |
| TG 49:2 | 834.7537 | 834.7545 | 1   | 15:0/16:1/18:1 and 16:0/16:1/17:1<br>and 14:0/17:1/18:1                                                                                      | C52H96O6  |
| TG 50:0 | 852.8004 | 852.8015 | 1.3 | 16:0_16:0_18:0 and 14:0_18:0_18:0                                                                                                            | C53H102O6 |
| TG 50:1 | 850.7846 | 850.7858 | 1.4 | 16:0_16:0_18:1                                                                                                                               | C53H100O6 |
| TG 50:2 | 848.7688 | 848.7702 | 1.6 | 16:0_16:1_18:1 and 16:0_16:0_18:2<br>and 14:0_18:1_18:1                                                                                      | C53H98O6  |
| TG 50:3 | 846.7531 | 846.7545 | 1.7 | 16:0_16:1_18:2 and 14:0_18:1_18:2<br>and 14:0_16:0_20:3 and<br>14:1_16:0_20:2                                                                | C53H96O6  |
| TG 51:0 | 866.8152 | 866.8171 | 2.2 | 16:0_17:0_18:0 and 15:0_16:0_20:0<br>and 15:0_18:0_18:0 and<br>14:0_17:0_20:0                                                                | C54H104O6 |
| TG 51:1 | 864.7997 | 864.8015 | 2   | 16:0_17:0_18:1 and 15:0_16:0_20:1<br>and 16:0_17:1_18:0 and<br>17:0_17:0_17:1 and 14:0_17:0_20:1<br>and 15:0_18:0_18:1                       | C54H102O6 |
| TG 51:2 | 862.7846 | 862.7858 | 1.5 | 16:0_17:1_18:1 and 15:0_18:1_18:1<br>and 16:1_17:0_18:1                                                                                      | C54H100O6 |

| TG 51:3           | 860.7686 | 860.7702 | 1.8 | 16:1_17:1_18:1 and 15:0_18:1_18:2<br>and 16:0_17:1_18:2                                                                                     | C54H98O6  |
|-------------------|----------|----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| TG 52:0           | 880.8316 | 880.8328 | 1.3 | 16:0_18:0_18:0 and 16:0_16:0_20:0<br>and 14:0_18:0_20:0                                                                                     | C55H106O6 |
| TG 52:2           | 876.7999 | 876.8015 | 1.8 | 16:0/18:1/18:1 and 16:0/16:0/20:2<br>and 16:1/18:0/18:1                                                                                     | C55H102O6 |
| TG 52:3           | 874.7840 | 874.7858 | 2.1 | 16:0_18:1_18:2 and 16:1_18:1_18:1<br>and 16:0_16:1_20:2 and<br>14:0_18:1_20:2 and 16:0_16:0_20:3                                            | C55H100O6 |
| TG 52:4           | 872.7688 | 872.7702 | 1.6 | 16:1_18:1_18:2 and 16:0_18:1_18:3<br>and 14:0_18:1_20:3 and<br>16:1_16:1_20:2 and 16:0_18:2_18:2                                            | C55H98O6  |
| TG 53:1_A         | 892.8302 | 892.8328 | 2.8 | 17:0_18:0_18:1                                                                                                                              | C56H106O6 |
| т <u>б</u> 53:1_В | 892.8296 | 892.8328 | 3.5 | 17:0_18:0_18:1                                                                                                                              | C56H106O6 |
| TG 53:2           | 890.8154 | 890.8171 | 2   | 17:0_18:1_18:1 and 15:0_18:1_20:1<br>and 16:0_17:1_20:1                                                                                     | C56H104O6 |
| TG 53:3           | 888.7999 | 888.8015 | 1.8 | 17:1/18:1/18:1 and 16:1/18:1/19:1                                                                                                           | C56H102O6 |
| TG 54:0           | 908.8628 | 908.8641 | 1.4 | 16:0_16:0_22:0                                                                                                                              | C57H110O6 |
| TG 54:1           | 906.8469 | 906.8484 | 1.7 | 16:0_16:0_22:1 and 16:0_18:0_20:1<br>and 16:0_18:1_20:0 and<br>14:0_18:0_22:1                                                               | C57H108O6 |
| TG 54:2           | 904.8316 | 904.8328 | 1.3 | 18:0_18:1_18:1 and 16:0_18:1_20:1<br>and 16:0_18:0_20:2                                                                                     | C57H106O6 |
| TG 54:3           | 902.8150 | 902.8171 | 2.4 | 16:0_18:1_20:2 and 16:1_18:1_20:1<br>and 16:1_18:0_20:2 and<br>16:0_18:2_20:1                                                               | C57H104O6 |
| TG 54:4           | 900.7993 | 900.8015 | 2.5 | 18:1_18:1_18:2 and 16:0_18:1_20:3<br>and 16:0_18:2_20:2 and<br>18:0_18:2_18:2                                                               | C57H102O6 |
| TG 54:5           | 898.7843 | 898.7858 | 1.7 | 16:0_18:1_20:4 and 18:1_18:1_18:3<br>and 16:0_16:0_22:5 and<br>16:1_18:1_20:3 and16:0_16:1_22:4<br>and 18:1_18:2_18:2 and<br>16:0_18:2_20:3 | C57H100O6 |
| TG 54:7           | 894.7537 | 894.7545 | 1   | 18:1_18:3_18:3                                                                                                                              | C57H96O6  |

| TG 55:2 | 918.8464  | 918.8484      | 2.2         | 17:0_18:1_20:1                                                                                                         | C58H108O6    |
|---------|-----------|---------------|-------------|------------------------------------------------------------------------------------------------------------------------|--------------|
| TG 55:3 | 916.8310  | 916.8328      | 2           | 18:1_18:1_19:1                                                                                                         | C58H106O6    |
| TG 56:1 | 934.8779  | 934.8797      | 1.9         | 16:0_18:1_22:0 and 16:0_18:0_22:1                                                                                      | C59H112O6    |
| TG 56:3 | 930.8465  | 930.8484      | 2.1         | 18:1/18:1/20:1 and 18:0/18:1/20:2<br>and 16:0/18:1/22:2 and<br>16:0/20:1/20:2 and                                      | C59H108O6    |
| TG 56:4 | 928.8298  | 928.8328      | 3.2         | 16:0_18:1_22:3 and 18:1_18:1_20:2<br>and 16:1_18:1_22:2 and<br>16:0_20:2_20:2 and 18:0_18:2_20:2<br>and 16:1_20:1_20:2 | C59H106O6    |
| TG 56:6 | 924.7990  | 924.8015      | 2.7         | 16:0_18:1_22:5 and 18:1_18:1_20:4                                                                                      | C59H102O6    |
| TG 56:7 | 922.7844  | 922.7858      | 1.5         | 16:1/18:1/22:5                                                                                                         | C59H100O6    |
| TG 57:3 | 944.8620  | 944.8641      | 2.2         | 18:1_19:1_20:1                                                                                                         | C60H110O6    |
| TG 58:0 | 964.9250  | 964.9267      | 1.7         | 16:0_20:0_22:0                                                                                                         | C61H118O6    |
| TG 58:2 | 960.8936  | 960.8954      | 1.8         | 16:0_20:1_22:1                                                                                                         | C61H114O6    |
| TG 58:3 | 958.8776  | 958.8797      | 2.2         | 18:1_18:1_22:1 and 18:1_20:1_20:1<br>and 16:1_20:1_22:1 and<br>18:0_18:2_22:1                                          | C61H112O6    |
| TG 58:4 | 956.8613  | 956.8641      | 2.9         | 18:0_18:1_22:3 and 18:1_20:1_20:2                                                                                      | C61H110O6    |
| TG 58:5 | 954.8450  | 954.8484      | 3.6         | 18:0_20:1_20:4                                                                                                         | C61H108O6    |
| TG 58:6 | 952.8303  | 952.8328      | 2.5         | 18:1_18:1_22:4                                                                                                         | C61H106O6    |
| TG 58:8 | 948.7998  | 948.8015      | 1.8         | 18:1_18:1_22:6                                                                                                         | C61H102O6    |
| TG 60:4 | 984.8926  | 984.8954      | 2.8         | 18:1_20:1_22:2                                                                                                         | C63H114O6    |
| TG 62:0 | 1020.9875 | 1020.9893     | 1.7         | 18:0_22:0_22:0                                                                                                         | C65H126O6    |
| TG 62:4 | 1012.9242 | 1012.9267     | 2.5         | 18:1_22:1_22:2                                                                                                         | C65H118O6    |
|         |           | CL identified | l as [M-H]⁻ |                                                                                                                        |              |
| CL 70:5 | 1425.9769 | 1425.9806     | 2.6         | 16:1_18:1_18:1_18:2                                                                                                    | C79H144O17P2 |
| CL 70:6 | 1423.9614 | 1423.965      | 2.5         | 16:1_18:2_18:1_18:2                                                                                                    | C79H142O17P2 |
| CL 72:2 | 1460.0649 | 1460.0589     | 4.1         | 16:0_18:1_18:1_20:0                                                                                                    | C81H154O17P2 |
| CL 72:8 | 1447.9588 | 1447.965      | 4.3         | 16:1_18:2_18:1_20:4                                                                                                    | C81H142O17P2 |

| CL 74:3                              | 1486.0785 | 1486.0745                   | 2.7                                    | 18:1_18:1_18:1_20:0     | C83H156O17P2 |  |
|--------------------------------------|-----------|-----------------------------|----------------------------------------|-------------------------|--------------|--|
| CL 76:5                              | 1510.0772 | 1510.0745                   | 1.8                                    | 18:0_18:1_20:0_20:4     | C85H156O17P2 |  |
| LPE identified as [M-H] <sup>-</sup> |           |                             |                                        |                         |              |  |
|                                      | (co       | onfirmation of polar head g | group by MS/MS of [M+H] <sup>+</sup> ] |                         |              |  |
| LPE 16:0                             | 452.2778  | 452.2783                    | 1                                      | 16:0                    | C21H44NO7P   |  |
| LPE 18:0                             | 480.3090  | 480.3096                    | 1.2                                    | 18:0                    | C23H48NO7P   |  |
| LPE 18:1                             | 478.2934  | 478.2939                    | 1.1                                    | *                       | C23H46NO7P   |  |
|                                      |           | PE identified               | l as [M-H]⁻                            |                         |              |  |
|                                      | (co       | onfirmation of polar head g | roup by MS/MS of [M+H] <sup>+</sup> ]  | )                       |              |  |
| PE 30:1                              | 660.4595  | 660.461                     | 2.2                                    | 14:0_16:1               | C35H68NO8P   |  |
| PE 32:0                              | 690.5066  | 690.5079                    | 1.9                                    | 16:0/16:0               | C37H74NO8P   |  |
| PE 32:1                              | 688.4905  | 688.4923                    | 2.6                                    | 16:0_16:1 and 14:0_18:1 | C37H72NO8P   |  |
| PE 32:2                              | 686.4751  | 686.4766                    | 2.3                                    | 16:1_16:1               | C37H70NO8P   |  |
| PE 33:1                              | 702.5065  | 702.5079                    | 2                                      | 16:0_17:1 and 15:0_18:1 | C38H74NO8P   |  |
| PE 34:1                              | 716.5218  | 716.5236                    | 2.5                                    | 16:0_18:1               | C39H76NO8P   |  |
| PE 34:2                              | 714.5056  | 714.5079                    | 3.2                                    | 16:1_18:1               | C39H74NO8P   |  |
| PE 34:3                              | 712.4904  | 712.4923                    | 2.6                                    | 16:0_18:3               | C39H72NO8P   |  |
| PE 34:4                              | 710.4751  | 710.4766                    | 2.1                                    | *                       | C39H70NO8P   |  |
| PE 35:1                              | 730.5372  | 730.5392                    | 2.7                                    | *                       | C40H78NO8P   |  |
| PE 35:2                              | 728.5215  | 728.5236                    | 2.8                                    | 17:1_18:1 and 16:1_19:1 | C40H76NO8P   |  |
| PE 36:1                              | 744.5536  | 744.5549                    | 1.7                                    | *                       | C41H80NO8P   |  |
| PE 36:2                              | 742.5374  | 742.5392                    | 2.4                                    | 18:1/18:1               | C41H78NO8P   |  |
| PE 36:3_A                            | 740.5218  | 740.5236                    | 2.4                                    | 18:1_18:2               | C41H76NO8P   |  |
| PE 36:3_B                            | 740.5219  | 740.5236                    | 2.2                                    | *                       | C41H76NO8P   |  |
| PE 36:4                              | 738.5058  | 738.5079                    | 2.8                                    | *                       | C41H74NO8P   |  |
| PE 36:5                              | 736.4892  | 736.4923                    | 4.1                                    | 16:1_20:4               | C41H72NO8P   |  |
| PE 37:4                              | 752.5214  | 752.5236                    | 2.9                                    | *                       | C42H76NO8P   |  |
| PE 38:1                              | 772.5854  | 772.5862                    | 1                                      | 18:0_20:1               | C43H84NO8P   |  |
| PE 38:2_A                            | 770.5686  | 770.5705                    | 2.5                                    | *                       | C43H82NO8P   |  |

| PE 38:2_B           | 770.5697 | 770.5705 | 1.1 | 18:0_20:2               | C43H82NO8P |
|---------------------|----------|----------|-----|-------------------------|------------|
| PE 38:3_A           | 768.5529 | 768.5549 | 2.5 | *                       | C43H80NO8P |
| PE 38:3_B           | 768.5530 | 768.5549 | 2.4 | 18:0_20:3 and 18:1_20:2 | C43H80NO8P |
| PE 38:4_A           | 766.5370 | 766.5392 | 2.9 | 18:1_20:3               | C43H78NO8P |
| PE 38:4_B           | 766.5369 | 766.5392 | 3   | 18:0_20:4               | C43H78NO8P |
| PE 38:5             | 764.5199 | 764.5236 | 4.8 | *                       | C43H76NO8P |
| PE 38:6             | 762.5070 | 762.5079 | 1.2 | 16:0_22:6               | C43H74NO8P |
| PE 38:7             | 760.4897 | 760.4923 | 3.4 | 16:1_22:6               | C43H72NO8P |
| PE 40:1             | 800.6166 | 800.6175 | 1.1 | *                       | C45H88NO8P |
| PE 40:2             | 798.6013 | 798.6018 | 0.6 | *                       | C45H86NO8P |
| <br>PE 40:3_A       | 796.5851 | 796.5862 | 1.3 | 18:1_22:2               | C45H84NO8P |
| PE 40:3_B           | 796.5858 | 796.5862 | 0.5 | *                       | C45H84NO8P |
| PE 40:3_C           | 796.5855 | 796.5862 | 0.9 | 20:1_20:2 and 18:1_22:2 | C45H84NO8P |
| PE 40:4             | 794.5687 | 794.5705 | 2.4 | 18:0_22:4               | C45H82NO8P |
| PE 40:5             | 792.5527 | 792.5549 | 2.7 | *                       | C45H80NO8P |
| PE 40:6_A           | 790.5359 | 790.5392 | 4.3 | *                       | C45H78NO8P |
| PE 40:6_B           | 790.5382 | 790.5392 | 1.4 | *                       | C45H78NO8P |
| PE 40:7             | 788.5206 | 788.5236 | 3.7 | 18:1_22:6               | C45H76NO8P |
| PE 42:1             | 828.6484 | 828.6488 | 0.4 | 24:0_18:1               | C47H92NO8P |
| PE 42:5             | 820.5849 | 820.5862 | 1.5 | 20:2_22:3               | C47H84NO8P |
| PE O-32:0           | 676.5277 | 676.5287 | 1.4 | O-16:0_16:0             | C37H76NO7P |
| PE O-36:1           | 730.5729 | 730.5756 | 3.8 | *                       | C41H82NO7P |
| PE O-36:3           | 726.5425 | 726.5443 | 2.5 | *                       | C41H78NO7P |
| PE O-36:4           | 724.5277 | 724.5287 | 1.3 | O-16:0_20:4             | C41H76NO7P |
| PE O-38:3/PE P38:2  | 754.5746 | 754.5756 | 1.3 | *                       | C43H82NO7P |
| PE O-38:4/PE P-38:3 | 752.5577 | 752.56   | 3   | *                       | C43H80NO7P |
| PE O-38:6           | 748.5264 | 748.5287 | 3   | *                       | C43H76NO7P |
| PE P-32:0           | 674.5119 | 674.513  | 1.7 | P-16:0_16:0             | C37H74NO7P |

| PE P-33:1           | 686.5114 | 686.513       | 2.3         | P-16:0_17:1                 | C38H74NO7P |
|---------------------|----------|---------------|-------------|-----------------------------|------------|
| PE O-34:1/PE P-34:0 | 702.5428 | 702.5443      | 2.2         | O-16:0_18:1 and P-18:0_16:0 | C39H78NO7P |
| PE P-34:1           | 700.5277 | 700.5287      | 1.3         | *                           | C39H76NO7P |
| PE P-34:2_A         | 698.5116 | 698.513       | 2           | P-16:0_18:2                 | C39H74NO7P |
| PE P-34:2_B         | 698.5115 | 698.513       | 2.2         | *                           | C39H74NO7P |
| PE P-36:1           | 728.5590 | 728.56        | 1.4         | P-16:0_20:1                 | C41H80NO7P |
| PE P-36:2           | 726.5424 | 726.5443      | 2.6         | P-16:0_20:2                 | C41H78NO7P |
| PE P-36:4           | 722.5111 | 722.513       | 2.6         | P-16:0_20:4                 | C41H74NO7P |
| PE P-36:5           | 720.4956 | 720.4974      | 2.4         | P-16:0_20:5                 | C41H72NO7P |
| PE P-38:1           | 756.5905 | 756.5913      | 1           | *                           | C43H84NO7P |
| PE P-38:2           | 754.5742 | 754.5756      | 1.9         | *                           | C43H82NO7P |
| PE P-38:4_A         | 750.5415 | 750.5443      | 3.7         | *                           | C43H78NO7P |
| PE P-38:4_B         | 750.5424 | 750.5443      | 2.5         | P-16:0_22:4                 | C43H78NO7P |
| PE P-38:4_C         | 750.5425 | 750.5443      | 2.5         | *                           | C43H78NO7P |
| PE P-38:6           | 746.5111 | 746.513       | 2.6         | *                           | C43H74NO7P |
| PE P-40:4           | 778.5756 | 778.5756      | 0           | *                           | C45H82NO7P |
| PE P-40:7           | 772.5265 | 772.5287      | 2.8         | P-18:1_22:6                 | C45H76NO7P |
|                     |          | PG identified | l as [M-H]⁻ |                             |            |
| PG 34:1_A           | 747.5165 | 747.5182      | 2.2         | 16:0_18:1                   | C40H77O10P |
| PG 34:1_B           | 747.5161 | 747.5182      | 2.8         | 16:0_18:1                   | C40H77O10P |
| PG 34:2_A           | 745.5013 | 745.5025      | 1.7         | 16:1_18:1                   | C40H75O10P |
| PG 34:2_B           | 745.5005 | 745.5025      | 2.6         | 16:1_18:1                   | C40H75O10P |
| PG 36:2_A           | 773.5318 | 773.5338      | 2.6         | 18:1_18:1                   | C42H79O10P |
| PG 36:2_B           | 773.5316 | 773.5338      | 2.9         | 18:1_18:1                   | C42H79O10P |
| PG 36:3             | 771.5163 | 771.5182      | 2.5         | 16:1_20:2 and 18:1_18:2     | C42H77O10P |
| PG 38:2             | 801.5634 | 801.5651      | 2.2         | 18:1_20:1                   | C44H83O10P |
| PG 38:3             | 799.5476 | 799.5495      | 2.3         | 18:1_20:2                   | C44H81O10P |
| PG 40:4             | 825.5626 | 825.5651      | 3           | 20:2_20:2                   | C46H83O10P |

| PG 40:7                             | 819.5168 | 819.5182      | 1.7         | 18:1_22:6 and 18:2_22:5 | C46H77O10P  |  |
|-------------------------------------|----------|---------------|-------------|-------------------------|-------------|--|
| PG 40:8                             | 817.5006 | 817.5025      | 2.3         | 18:2_22:6               | C46H75O10P  |  |
| PG 42:8                             | 845.5321 | 845.5338      | 2           | 20:2_22:6               | C48H79O10P  |  |
| PG 44:12                            | 865.5010 | 865.5025      | 1.7         | 22:6_22:6               | C50H75O10P  |  |
| PI identified as [M-H] <sup>−</sup> |          |               |             |                         |             |  |
| PI 32:1                             | 807.5009 | 807.5029      | 2.4         | 16:0_16:1               | C41H77O13P  |  |
| PI 34:1                             | 835.5315 | 835.5342      | 3.3         | 16:0_18:1               | C43H81O13P  |  |
| PI 34:2                             | 833.5154 | 833.5186      | 3.7         | 16:1_18:1               | C43H79O13P  |  |
| PI 36:1                             | 863.5630 | 863.5655      | 2.8         | 18:0_18:1               | C45H85O13P  |  |
| PI 36:2_A                           | 861.5469 | 861.5499      | 3.4         | 18:1_18:1               | C45H83O13P  |  |
| РІ 36:2_В                           | 861.5476 | 861.5499      | 2.6         | 18:0_18:2 and 16:0_20:2 | C45H83O13P  |  |
| PI 36:4                             | 857.5163 | 857.5186      | 2.6         | 16:0_20:4               | C45H79O13P  |  |
| PI 37:2                             | 875.5636 | 875.5655      | 2.2         | *                       | C46H85O13P  |  |
| PI 37:4                             | 871.5318 | 871.5342      | 2.8         | 17:0_20:4               | C46H81O13P  |  |
| PI 38:2                             | 889.5785 | 889.5812      | 3           | 18:0_20:2               | C47H87O13P  |  |
| PI 38:4_A                           | 885.5477 | 885.5499      | 2.4         | 16:0_22:4               | C47H83O13P  |  |
| PI 38:4_B                           | 885.5470 | 885.5499      | 3.2         | 18:0_20:4               | C47H83O13P  |  |
| PI 38:5                             | 883.5318 | 883.5342      | 2.7         | 18:1_20:4               | C47H81O13P  |  |
| PI 40:4                             | 913.5784 | 913.5812      | 3           | 18:0_22:4               | C49H87O13P  |  |
| PI 40:6                             | 909.5476 | 909.5499      | 2.5         | 18:0_22:6               | C49H83O13P  |  |
|                                     |          | PS identified | l as [M-H]⁻ |                         |             |  |
| PS 34:1                             | 760.5112 | 760.5134      | 2.9         | 16:0_18:1 and 16:1_18:0 | C40H76NO10P |  |
| PS 36:1_A                           | 788.5429 | 788.5447      | 2.3         | 18:0_18:1               | C42H80NO10P |  |
| PS 36:1_B                           | 788.5429 | 788.5447      | 2.2         | 18:0_18:1               | C42H80NO10P |  |
| PS 36:2                             | 786.5266 | 786.5291      | 3.1         | 18:1/18:1               | C42H78NO10P |  |
| PS 38:2                             | 814.5584 | 814.5604      | 2.4         | 18:0_20:2 and 18:1_20:1 | C44H82NO10P |  |
| PS 40:4                             | 838.5575 | 838.5604      | 3.4         | 18:0:22:4               | C46H82NO10P |  |
| PS 40:5                             | 836.5411 | 836.5447      | 4.4         | 18:0_22:5               | C46H80NO10P |  |

| PS 40:6 | 834.5267 | 834.5291 | 2.8 | 18:0_22:6 | C46H78NO10P |
|---------|----------|----------|-----|-----------|-------------|

**Supplementary Table S4.** Univariate analysis of the LC-MS data from of the three groups. Homogeneity of variances was tested using the Levine test. Normality was assessed using Shapiro-Wilk normality test. *P*-values were calculated using the ANOVA test (in green). In cases where non-normality was suspected, *p*-values were calculated using the Kruskal-Wallis test (in orange). *P*-values were adjusted using Benjamin- Hochberg correction (*p*.adj). Adjusted p-value significance symbols (p.adj.signif): \*\*\*\* p<0.0001, \*\*\* p<0.001, \*\* p<0.01, \*\*p<0.05.

| Lipid species  | <i>p</i> .adj | p.adj.signif |
|----------------|---------------|--------------|
| PG.40.4        | 5.58E-06      | ****         |
| PG.34.1_B      | 1.79E-05      | ****         |
| PC.O.32.1_B    | 5.37E-05      | ****         |
| PC.32.2_A      | 5.37E-05      | ****         |
| PE.P.38.6      | 6.55E-05      | ****         |
| PG.36.2_B      | 0.000239      | ***          |
| PC.30.1        | 0.000265      | ***          |
| SM.34.1.O2_A   | 0.000265      | ***          |
| PC.34.3_A      | 0.000360      | ***          |
| PE.32.0        | 0.000672      | ***          |
| SM.34.2.02     | 0.000974      | ***          |
| PC.P.32.1      | 0.000974      | ***          |
| HexCer.42.1.02 | 0.000986      | ***          |
| PS.40.6        | 0.000986      | ***          |
| PC.34.3_B      | 0.000989      | ***          |
| PC.36.5_B      | 0.001134      | **           |
| PC.0.32.0      | 0.001163      | **           |
| PC.36.1        | 0.001182      | **           |
| PE.P.36.4      | 0.001400      | **           |
| Cer.40.2.02    | 0.001483      | **           |
| PC.36.6_A      | 0.001803      | **           |
| PC.34.2_A      | 0.001927      | **           |
| PC.0.35.2      | 0.002173      | **           |
| PC.0.40.6      | 0.002593      | **           |
| CL.70.6        | 0.002593      | **           |
| PC.38.2_B      | 0.002593      | **           |
| PE.38.2_A      | 0.003014      | **           |
| PI.36.2_B      | 0.003014      | **           |
| PE.O.32.0      | 0.003014      | **           |
| PC.0.31.0      | 0.003389      | **           |
| PG.38.3        | 0.003408      | **           |
| TG.46.1        | 0.003976      | **           |
| PS.36.2        | 0.004027      | **           |
| PC.0.30.0      | 0.004539      | **           |
| Cer.34.1.02    | 0.005204      | **           |
| PC.40.3_A      | 0.005477      | **           |
| LPC.18.1       | 0.006519      | **           |
| TG.44.1        | 0.006519      | **           |
| TG.56.1        | 0.006871      | **           |
| PE.P.40.7      | 0.006915      | **           |

| PC.33.2_B      | 0.007058 | ** |
|----------------|----------|----|
| PC.34.1        | 0.007058 | ** |
| PI.38.2        | 0.007058 | ** |
| PE.P.38.4_C    | 0.007058 | ** |
| PC.42.1        | 0.007058 | ** |
| TG.48.2        | 0.007058 | ** |
| SPB.18.0.02_B  | 0.007058 | ** |
| PS.40.4        | 0.007058 | ** |
| PC.34.4        | 0.011651 | *  |
| PC.28.1        | 0.011651 | *  |
| LPC.16.0       | 0.011651 | *  |
| SPB.20.0.02    | 0.011651 | *  |
| PE.P.40.4      | 0.011651 | *  |
| PE.38.7        | 0.011651 | *  |
| PC.30.0        | 0.011651 | *  |
| PE.40.3_C      | 0.011651 | *  |
| PE.30.1        | 0.011651 | *  |
| PS.40.5        | 0.011651 | *  |
| TG.46.2        | 0.011651 | *  |
| <br>TG.48.1    | 0.016938 | *  |
| PC.44.2        | 0.020110 | *  |
| PE.38.4_B      | 0.020110 | *  |
| PC.36.6_B      | 0.020110 | *  |
| PI.37.2        | 0.020110 | *  |
| Cer.44.2.02    | 0.020110 | *  |
| PC.40.3_B      | 0.020110 | *  |
| PE.P.38.1      | 0.020110 | *  |
| PE.40.4        | 0.023526 | *  |
| PC.O.30.1_B    | 0.023526 | *  |
| PC.0.38.3_A    | 0.023526 | *  |
| PC.42.8        | 0.023526 | *  |
| SPB.16.0.02    | 0.023526 | *  |
| PC.P.37.2      | 0.026530 | *  |
| PE.40.3_B      | 0.026530 | *  |
| PC.34.3_D      | 0.026530 | *  |
| PC.P.36.5_A    | 0.029872 | *  |
| SM.34.1.02_B   | 0.029872 | *  |
| PC.44.3        | 0.033747 | *  |
| TG.46.0        | 0.035138 | *  |
| PE.32.2        | 0.035138 | *  |
| PE.O.36.1      | 0.035138 | *  |
| HexCer.42.2.02 | 0.035138 | *  |
| PC.36.5_A      | 0.035138 | *  |
| SPB.18.0.O2_C  | 0.035138 | *  |
| PC.36.3_A      | 0.035138 | *  |
| PE.P.36.5      | 0.037835 | *  |
| SM.32.1.02     | 0.037835 | *  |

| PC.0.40.2      | 0.037835 | *  |
|----------------|----------|----|
| PC.0.38.5      | 0.039194 | *  |
| PC.33.2_A      | 0.039194 | *  |
| PC.O.33.1_B    | 0.039194 | *  |
| PC.42.10       | 0.039194 | *  |
| PE.O.36.4      | 0.039194 | *  |
| PC.32.0        | 0.039194 | *  |
| PC.40.1        | 0.039304 | *  |
| PG.42.8        | 0.039304 | *  |
| PC.42.2        | 0.039860 | *  |
| SM.43.1.02     | 0.041547 | *  |
| Cer.34.2.02    | 0.041547 | *  |
| PC.31.0_A      | 0.041547 | *  |
| SM.44.2.02     | 0.044176 | *  |
| PC.32.1        | 0.044176 | *  |
| PE.P.34.0      | 0.046709 | *  |
| PC.31.1        | 0.046709 | *  |
| PE.P.32.0      | 0.048717 | *  |
| PC.31.0_B      | 0.048717 | *  |
| PS.36.1_A      | 0.050797 | ns |
| PE.P.34.2_A    | 0.051061 | ns |
| PE.P.34.1      | 0.051061 | ns |
| PE.36.5        | 0.053784 | ns |
| PE.P.38.4_A    | 0.055513 | ns |
| PC.34.2_B      | 0.055513 | ns |
| PI.40.6        | 0.055513 | ns |
| PS.38.2        | 0.056273 | ns |
| SM.40.2.02     | 0.057628 | ns |
| PC.0.32.1_A    | 0.057628 | ns |
| PC.P.40.6      | 0.059354 | ns |
| PG.40.8        | 0.062659 | ns |
| PE.40.2        | 0.064592 | ns |
| TG.54.1        | 0.065945 | ns |
| PE.38.2_B      | 0.065945 | ns |
| PE.40.7        | 0.065945 | ns |
| HexCer.40.1.02 | 0.070577 | ns |
| TG.58.2        | 0.070856 | ns |
| PE.P.33.1      | 0.070856 | ns |
| PE.36.3_B      | 0.075641 | ns |
| PE.40.3_A      | 0.077263 | ns |
| PC.42.4_B      | 0.078837 | ns |
| IG.53.1_A      | 0.078837 | ns |
| PC.40.2        | 0.080956 | ns |
| PE.O.38.4      | 0.081849 | ns |
| 16.52.2        | 0.081849 | ns |
| 16.54.3        | 0.081849 | ns |
| TG.50.1        | 0.086507 | ns |

| SM.43.2.02  | 0.087259 | ns |
|-------------|----------|----|
| PE.38.4_A   | 0.087259 | ns |
| PE.40.6_B   | 0.089201 | ns |
| PC.39.2     | 0.091117 | ns |
| PI.38.4_B   | 0.092374 | ns |
| PC.O.38.4_B | 0.092374 | ns |
| <br>TG.50.2 | 0.093824 | ns |
| TG.50.3     | 0.099214 | ns |
| PI.40.4     | 0.104240 | ns |
| TG.52.3     | 0.106628 | ns |
| SPB.16.1.O2 | 0.108376 | ns |
| PC.P.34.1   | 0.113382 | ns |
| TG.58.0     | 0.113382 | ns |
| PE.38.1     | 0.113480 | ns |
| TG.48.0     | 0.118838 | ns |
| PC.O.34.3_B | 0.127131 | ns |
| PC.38.7     | 0.137329 | ns |
| TG.48.3     | 0.138801 | ns |
| PC.39.4_B   | 0.139244 | ns |
| PC.O.36.2   | 0.142592 | ns |
| Cer.42.1.O2 | 0.146335 | ns |
| PC.32.2_B   | 0.147723 | ns |
| CL.76.5     | 0.149094 | ns |
| PC.O.38.6   | 0.157607 | ns |
| PC.40.8     | 0.160145 | ns |
| PE.O.38.6   | 0.160145 | ns |
| PC.38.3_B   | 0.165398 | ns |
| Cer.43.1.02 | 0.170235 | ns |
| PE.40.5     | 0.173611 | ns |
| PC.O.38.5_B | 0.174762 | ns |
| PC.35.2_A   | 0.181409 | ns |
| PC.41.2     | 0.182414 | ns |
| PC.38.6_A   | 0.188865 | ns |
| PC.37.2_B   | 0.188865 | ns |
| Cer.34.0.02 | 0.189963 | ns |
| TG.62.4     | 0.196302 | ns |
| PE.36.1     | 0.197772 | ns |
| PC.35.3     | 0.201532 | ns |
| PE.O.38.3   | 0.203423 | ns |
| PC.0.37.4   | 0.203423 | ns |
| PE.40.1     | 0.203518 | ns |
| PC.P.38.6   | 0.213565 | ns |
| TG.52.4     | 0.213565 | ns |
| PS.36.1_B   | 0.216590 | ns |
| PC.O.33.1_A | 0.216590 | ns |
| SM.42.1.02  | 0.216590 | ns |
| PE.P.36.1   | 0.216590 | ns |

| LPE.16.0     | 0.216590 | ns |
|--------------|----------|----|
| PC.34.0      | 0.216590 | ns |
| PC.0.33.2    | 0.219402 | ns |
| TG.54.2      | 0.224168 | ns |
| PC.42.4_A    | 0.235508 | ns |
| TG.47.1      | 0.235508 | ns |
| Coenzyme.Q10 | 0.236207 | ns |
| PC.35.1_A    | 0.251712 | ns |
| DG.34.1      | 0.251712 | ns |
| PE.36.2      | 0.251712 | ns |
| PC.36.7      | 0.259958 | ns |
| CL.70.5      | 0.260513 | ns |
| PI.38.4_A    | 0.266737 | ns |
| PE.38.3_A    | 0.267251 | ns |
| PC.39.3      | 0.268264 | ns |
| PC.36.3_C    | 0.276177 | ns |
| PG.36.3      | 0.276633 | ns |
| PG.34.2_A    | 0.277085 | ns |
| SM.34.0.02   | 0.281184 | ns |
| PS.34.1      | 0.283426 | ns |
| PC.36.2      | 0.291069 | ns |
| SM.41.1.02   | 0.291441 | ns |
| PC.40.4_A    | 0.309712 | ns |
| PC.44.5      | 0.317117 | ns |
| PC.37.1      | 0.322889 | ns |
| SM.40.0.02   | 0.324856 | ns |
| PC.O.36.4    | 0.325057 | ns |
| CL.72.8      | 0.325256 | ns |
| PE.38.6      | 0.327184 | ns |
| PC.O.34.2_B  | 0.329094 | ns |
| PE.34.2      | 0.330663 | ns |
| PE.P.34.2_B  | 0.330986 | ns |
| TG.51.3      | 0.333019 | ns |
| TG.49.1      | 0.333019 | ns |
| CL.74.3      | 0.333484 | ns |
| PG.44.12     | 0.333484 | ns |
| TG.62.0      | 0.338641 | ns |
| PC.42.5_B    | 0.343613 | ns |
| LPC.18.0     | 0.363709 | ns |
| Cer.40.1.02  | 0.370277 | ns |
| PE.32.1      | 0.383758 | ns |
| DG.40.6      | 0.384784 | ns |
| PC.0.36.3_A  | 0.384784 | ns |
| TG.49.2      | 0.387925 | ns |
| TG.51.2      | 0.400655 | ns |
| PC.O.34.1_B  | 0.402412 | ns |
| PC.O.36.3_B  | 0.403700 | ns |

| LPE.18.0      | 0.406719 | ns |
|---------------|----------|----|
| PE.38.5       | 0.414051 | ns |
| PI.34.1       | 0.414051 | ns |
| TG.51.1       | 0.414051 | ns |
| TG.54.4       | 0.417621 | ns |
| CL.72.2       | 0.424295 | ns |
| PC.39.4_A     | 0.427913 | ns |
| PC.35.2_B     | 0.428681 | ns |
| LPE.18.1      | 0.435813 | ns |
| PE.34.3       | 0.435813 | ns |
| SM.38.1.02    | 0.441618 | ns |
| PC.37.5       | 0.450409 | ns |
| PE.P.38.4_B   | 0.453086 | ns |
| TG.56.3       | 0.456191 | ns |
| PE.38.3_B     | 0.462869 | ns |
| TG.58.4       | 0.464867 | ns |
| PC.39.5       | 0.472673 | ns |
| TG.56.4       | 0.486867 | ns |
| PC.36.3_B     | 0.487376 | ns |
| PC.38.3_A     | 0.488359 | ns |
| TG.53.1_B     | 0.492705 | ns |
| PI.37.4       | 0.492705 | ns |
| SPB.18.0.02_A | 0.492705 | ns |
| SM.36.1.02    | 0.493651 | ns |
| TG.50.0       | 0.496949 | ns |
| PC.38.4_A     | 0.496949 | ns |
| LPC.16.1      | 0.503558 | ns |
| PE.35.2       | 0.507729 | ns |
| PC.35.4       | 0.532788 | ns |
| PC.37.6       | 0.534973 | ns |
| PC.O.36.5     | 0.541360 | ns |
| TG.58.5       | 0.552502 | ns |
| PG.40.7       | 0.554702 | ns |
| DG.40.5       | 0.555384 | ns |
| TG.54.0       | 0.557451 | ns |
| PC.O.40.5_B   | 0.558060 | ns |
| DG.38.4       | 0.558060 | ns |
| PC.O.38.5_A   | 0.558060 | ns |
| PC.41.6       | 0.562467 | ns |
| SM.34.1.03    | 0.564194 | ns |
| PC.O.40.5_A   | 0.566190 | ns |
| PC.40.7_A     | 0.569530 | ns |
| TG.52.0       | 0.571036 | ns |
| PC.35.0       | 0.574199 | ns |
| PC.38.6_B     | 0.575370 | ns |
| PC.36.4       | 0.575370 | ns |
| TG.53.2       | 0.586664 | ns |

| TG.58.8        | 0.592538 | ns |
|----------------|----------|----|
| PE.37.4        | 0.605018 | ns |
| TG.53.3        | 0.609482 | ns |
| PI.36.2_A      | 0.609482 | ns |
| PC.38.5_A      | 0.609482 | ns |
| TG.56.7        | 0.609482 | ns |
| PG.34.1_A      | 0.610365 | ns |
| SM.40.1.02_A   | 0.610365 | ns |
| TG.54.7        | 0.616764 | ns |
| PC.O.30.1_A    | 0.631912 | ns |
| PI.36.1        | 0.649308 | ns |
| TG.55.2        | 0.655181 | ns |
| SPB.18.1.O2    | 0.655181 | ns |
| PC.37.2_A      | 0.671559 | ns |
| Cer.41.1.02    | 0.680029 | ns |
| TG.60.4        | 0.680029 | ns |
| PC.42.3        | 0.681934 | ns |
| DG.36.2        | 0.682469 | ns |
| PC.0.34.0      | 0.682469 | ns |
| PE.40.6_A      | 0.682469 | ns |
| TG.42.0        | 0.683898 | ns |
| TG.54.5        | 0.684068 | ns |
| PC.40.5_A      | 0.696678 | ns |
| PC.40.4_B      | 0.711682 | ns |
| PE.42.5        | 0.719271 | ns |
| TG.58.3        | 0.722199 | ns |
| HexCer.34.1.02 | 0.729123 | ns |
| PC.44.6        | 0.729139 | ns |
| PC.P.39.1      | 0.730378 | ns |
| PC.28.0        | 0.741196 | ns |
| DG.38.6        | 0.742053 | ns |
| PE.34.1        | 0.750736 | ns |
| Cer.41.2.02    | 0.759023 | ns |
| SM.41.2.02     | 0.760129 | ns |
| PC.38.2_A      | 0.774252 | ns |
| PC.38.4_B      | 0.779875 | ns |
| PE.P.38.2      | 0.779875 | ns |
| PC.42.7_A      | 0.783246 | ns |
| PI.36.4        | 0.787594 | ns |
| PC.40.7_B      | 0.787594 | ns |
| PI.34.2        | 0.792587 | ns |
| PG.34.2_B      | 0.803684 | ns |
| PE.33.1        | 0.811324 | ns |
| PE.36.3_A      | 0.811324 | ns |
| PG.36.2_A      | 0.813351 | ns |
| PE.34.4        | 0.814956 | ns |
| PC.O.34.3_A    | 0.818869 | ns |

| PE.O.36.3     | 0.827460 | ns |
|---------------|----------|----|
| PC.38.1       | 0.827460 | ns |
| PE.36.4       | 0.849537 | ns |
| Cer.43.2.02   | 0.850366 | ns |
| DG.38.5       | 0.850366 | ns |
| PI.32.1       | 0.850366 | ns |
| TG.49.0       | 0.854187 | ns |
| TG.58.6       | 0.860052 | ns |
| PC.37.2_C     | 0.861327 | ns |
| SM.40.1.O2_B  | 0.865230 | ns |
| TG.55.3       | 0.868160 | ns |
| PC.40.6_B     | 0.879477 | ns |
| PC.42.7_B     | 0.879477 | ns |
| TG.51.0       | 0.884536 | ns |
| Cer.42.2.02   | 0.885374 | ns |
| DG.36.4       | 0.885374 | ns |
| PC.0.34.2_A   | 0.891441 | ns |
| PC.O.38.2     | 0.896991 | ns |
| TG.57.3       | 0.896991 | ns |
| PC.34.3_C     | 0.897589 | ns |
| PC.33.0       | 0.917500 | ns |
| PC.P.36.5_B   | 0.921670 | ns |
| PC.35.1_B     | 0.926542 | ns |
| PE.35.1       | 0.926542 | ns |
| PC.O.36.1     | 0.926542 | ns |
| PC.42.6       | 0.927046 | ns |
| PC.33.1       | 0.938592 | ns |
| TG.47.0       | 0.945651 | ns |
| PC.40.5_B     | 0.945651 | ns |
| TG.45.0       | 0.945651 | ns |
| PC.41.7       | 0.949210 | ns |
| SM.33.1.02    | 0.952749 | ns |
| PC.42.5_A     | 0.956674 | ns |
| PC.40.6_A     | 0.956674 | ns |
| TG.56.6       | 0.960162 | ns |
| PI.38.5       | 0.967081 | ns |
| PE.42.1       | 0.968472 | ns |
| PE.P.36.2     | 0.976986 | ns |
| PC.O.38.4_A   | 0.976986 | ns |
| SM.42.2.02    | 0.976986 | ns |
| PG.38.2       | 0.976986 | ns |
| PC.0.34.1_A   | 0.977326 | ns |
| PC.0.38.3_B   | 0.989697 | ns |
| <br>РС.38.5_В | 0.994000 | ns |
| TG.40.0       | 0.997000 | ns |
|               |          |    |



**Supplementary Figure S1.** Fatty acid profile of Leydig cells treated with CBZ (25  $\mu$ M and 200  $\mu$ M) and control (CTR) obtained by GC-MS.



**Supplementary Figure S2.** Sum and ratio of fatty acid profile of Leydig cells treated with CBZ (25  $\mu$ M and 200  $\mu$ M) and control (CTR) obtained by GC-MS.



**Supplementary Figure S3.** PC identification. **A)** LC-MS/MS spectrum of the  $[M+H]^+$  ion of PC 30:1 at m/z 704.50. Confirmation of PC class was achieved by identification of the typical product ions at m/z 184.07, corresponding to the phosphocholine polar head group. **B)** LC-MS/MS spectrum of the  $[M+HCOO]^-$  ion of PC 30:1 at m/z 748.53. Fragment ions characteristic of demethylated phosphocholine polar head at m/z 168.04 and the typical neutral loss of 60 Da (HCOOCH<sub>3</sub>) were observed. The PC molecular species composition was confirmed by the identification of the carboxylate anions of the fatty acyl chains ([RCOO]<sup>-</sup>) identified at m/z 227.20 and m/z 253.22 corresponding to 14:0 and 16:1, respectively forming the PC 14:0\_16:1. This fragmentation pattern was also used to identify LPC class, with only one fatty acyl chain observed in negative ion mode.

A)

B)

**Supplementary Figure S4**. SM identification. **A)** LC-MS/MS spectrum of the  $[M+H]^+$  ion of SM 34:0;O2 at m/z 705.49. Confirmation of SM class was achieved by the identification of the product ion at m/z 184.07, corresponding to the phosphocholine polar head. **B)** LC-MS/MS spectrum of the  $[M+HCOO]^-$  ion of SM 34:0;O2 at m/z 749.52. Confirmation of SM class was achieved by the identification of the product ion at m/z 168.04, corresponding to the demethylated phosphocholine polar, and the typical neutral loss of 60 Da (HCOOCH<sub>3</sub>).

B)

**Supplementary Figure S5.** PE identification. **A)** LC-MS/MS spectrum of the  $[M+H]^+$  ion of PE 34:2 at m/z 716.46. Confirmation of PE class was achieved by the identification of the neutral loss of 141 Da, corresponding to phosphoethanolamine polar head (m/z 575.50). **B)** LC-MS/MS spectrum of the  $[M-H]^-$  ion of PE 34:2 at m/z 714.48. The carboxylate anions of the fatty acyl chains ( $[RCOO]^-$ ) were identified at m/z 253.22 and 281.25, corresponding to 16:1 and 18:1, forming the PE 16:1\_18:1. This fragmentation pattern was also used to identify LPE class, with only one fatty acyl chain observed in negative ion mode.

**Supplementary Figure S6.** PG identification. LC-MS/MS spectrum of the  $[M-H]^-$  ion of PG 34:1 at m/z 747.52. Confirmation of PG class was achieved by the identification of the product ion at m/z 171.00, corresponding to the glycerol phosphate anion. The carboxylate anions of the fatty acyl chains ([RCOO]<sup>-</sup>) were observed at m/z 255.23 and 281.25, corresponding to 16:0 and 18:1, forming PG 16:0\_18:1.



**Supplementary Figure S7.** PI identification. LC-MS/MS spectrum of  $[M-H]^-$  ion of PI 38:2 at m/z 889.58. Confirmation of PI class was achieved by the identification of the product ion at m/z 241.01 corresponding to the phosphoinositol head group. The carboxylate anions of the fatty acyl chains ([RCOO]<sup>-</sup>) were observed at m/z 283.26 and 307.26, corresponding to 18:0 and 20:2, forming PI 18:0\_20:2.



**Supplementary Figure S8.** PS identification. LC-MS/MS spectrum of  $[M-H]^-$  ion of PS 36:2 at m/z 786.52. Confirmation of PS class was achieved by the identification of the typical neutral loss of 87 Da (m/z 699.49) and the product ion at m/z 152.99, corresponding to glycerol-3-phosphate with loss of one molecule of water. The carboxylate anions of the fatty acyl chains ( $[RCOO]^-$ ) were observed at m/z 281.25, corresponding to 18:1, forming PS 18:1\_18:1.



**Supplementary Figure S9**. Cer identification. LC-MS/MS spectrum of the  $[M+H]^+$  ion of Cer 34:0;O2 at *m/z* 540.53. Confirmation of Cer class was achieved by the identification of the abundant product ions of the sphingoid base at *m/z* 256.26 and 284.29, corresponding to 16:0;O2 and 18:0;O2, respectively (Cer 16:0;O2\_18:0).



**Supplementary Figure S10.** CL identification. LC-MS/MS spectrum of the [M-H]<sup>-</sup> ion of CL 70:5 at m/z 1425.98. Confirmation of CL class was achieved by the product ion at m/z 152.99, corresponding to glycerol-3-phosphate backbone with loss of one molecule of water. The m/z 671.47 and 697.48 correspond to PA 34:2 and PA 36:3, respectively. The fatty acyl chains were observed at m/z 253.22, 279.23 and 281.25, corresponding to the FA 16:1, 18:2 and 18:1, forming CL 16:1\_18:1\_18:2.