SUPPORTING INFORMATION

FOR

Grinding and the anisotropic environment: Influences on the diastereoselective formation of Group 15 allyl complexes

Lauren E. Wenger, Timothy P. Hanusa*

Department of Chemistry, Vanderbilt University, VU Station B #351822,

Nashville, Tennessee 37235 USA

Table of Contents

Abbreviations	S4
General Considerations	S4
Materials	S4
Mechanochemical protocol	S4
Table S1. Structural parameters for EX_3 (E = As, Sb; X = Cl, I)	S6
Experimental Details for the Preparation of $[AsA'_3]$	S7
Sample mechanochemical synthesis of [AsA´ ₃] from AsI ₃	S7
Table S2. ¹ H NMR shifts used to determine ratios of C ₁ [AsA' ₃], C ₃ [AsA' ₃], and {A'} ₂	S7
Table S3. Milling conditions for the synthesis of $[AsA'_3]$ without pre-grinding ^a	S8
Figure S1. [AsA' ₃] C ₁ :C ₃ : Milling Material	
Figure S2. [AsA´ ₃] Yield: Milling Material	
Figure S3. [AsA' ₃]:{A'} ₂ ratio: Milling Material	S10
Figure S4. [AsA´3] Yield: Ball Size	S10
Figure S5. [AsA' ₃]:{A´} ₂ ratio: Ball Size	S11
Mechanochemical synthesis of [AsA' ₃] from AsCl ₃	S12
Solution synthesis of [AsA´3] from AsI3	S12
Solution synthesis of [AsA' $_3$] from AsCl $_3$	S12
LAG reactions with Asl ₃	S13
Table S4. Milling conditions for the synthesis of $[AsA'_3]$ under LAG conditions	S13
Table S5. Milling conditions for the synthesis of $[AsA'_3]$ under LAG conditions and results	S13
Figure S6. [AsA´3] Yield: LAG	S14
Figure S7. [AsA' ₃]:{A'} ₂ ratio: LAG	S14
Pre-grinding of AsI₃	S15
Table S6. Milling conditions for the synthesis of $[AsA'_3]$ with pre-grinding ^a	S15
Figure S8. [AsA´3] Yield: Pre-Grinding	S16
Figure S9. [AsA' ₃] to {A'} ₂ ratio: Pre-Grinding	S17
Decomposition study: Milling [AsA' $_3$] alone or with KI	S18
Table S7. Conditions for milling decomposition studies	S18
Decomposition study: Heating [AsA' $_3$] in toluene-d $_8$	S18
Figure S10. Change in $C_1:C_3$ by milling prepared [AsA' ₃]	S19
Figure S11. Change in [AsA' ₃] to {A'} ₂ by milling prepared [AsA' ₃]	S19
Experimental Details for the Preparation of $[SbA'_3]$	S20

Sample mechanochemical synthesis of [SbA' ₃] from SbCl ₃	S20
Table S8. ¹ H NMR shifts used to determine ratios of C_1 [SbA' ₃], C_3 [SbA' ₃], and {A'} ₂	S20
Sample mechanochemical synthesis of [SbA' ₃] from Sbl ₃	S20
Table S9. Milling conditions for the synthesis of [SbA $^{\prime}_3$] without pre-grinding ^a	S21
Figure S12. [SbA' ₃] C ₁ :C ₃ : Mill, Material, Sb source	S22
Figure S13. [SbA' ₃] Yield: Mill, Material, Sb source	S23
LAG reactions with SbCl ₃	S25
Solution synthesis of [SbA' $_3$] from SbCl $_3$	S25
Table S10. Conditions for the synthesis of [SbA' ₃] from SbCl ₃ under LAG or solution conditions	S25
Figure S15. [SbA' ₃] Yield: LAG	S26
Figure S16. [SbA' ₃] to {A'} ₂ ratio: LAG	S26
$Pre\operatorname{-Grinding}$ of $SbCl_3$ and Sbl_3	S27
Table S11. Milling conditions for the synthesis of [SbA' $_3$] with pre-grinding	S27
Figure S17. [SbA' ₃] Yield: Pre-Grinding	S28
Figure S18. [SbA' ₃] to {A'} ₂ ratio: Pre-Grinding	S29
Photographs of Pre-Ground Samples	\$30
Figure S19. AsI $_3$ ground in the mixer mill at 10 Hz for 30 s	S30
Figure S20. AsI $_3$ ground in the mixer mill at 10 Hz for 1 min (left) or 2 min (right)	\$30
Figure S21. AsI₃ ground in the mixer mill at 10 Hz for 5 min. (left) or 10 min. (right)	S31
Figure S22. AsI₃ ground in the mixer mill at 30 Hz for 2 min	S31
Scanning Electron Microscopy	S32
Procedure for SEM	S32
Figure S23. SEM image of unground AsI₃	S32
Figure S24. SEM Image of ground AsI₃	\$33
Powder X-Ray Diffraction	\$34
Procedure for PXRD	\$34
Figure S25. PXRD of AsI₃ after grinding	\$34
References	\$35

Abbreviations:

[A'] = [1,3-(SiMe₃)₂C₃H₃][−]
HMDSO = hexamethyldisiloxane
LAG = liquid assisted grinding
MM = mixer mill
PBM or PM = planetary ball mill
SS = stainless steel
THF = tetrahydrofuran
ZrO₂ = zirconia

General Considerations. All manipulations were performed with the rigorous exclusion of air and moisture using Schlenk and glovebox techniques under a nitrogen atmosphere. Unless otherwise indicated, the glovebox used was free of ethereal solvents; reactions involving THF or HMDSO were performed in another glovebox that stores ethereal solvents.

Proton (¹H) NMR spectra were obtained on an AV-400 spectrometer at 400 MHz or an AV-600 spectrometer at 600 MHz at room temperature and were referenced to the residual proton resonances of benzene- d_6 or toluene- d_8 .

Materials. Anhydrous Group 15 halides (AsCl₃, AsI₃, SbCl₃, SbI₃) were purchased from Strem Chemicals and used as received. The potassium allyl K[A'] = K[1,3-(SiMe₃)₂C₃H₃] was synthesized by transmetallation of Li[A']¹ with potassium *tert*-butoxide in hexanes solution. Hexanes and THF were distilled under nitrogen over NaK/benzophenone radical,² then stored over 4 Å molecular sieves in a glovebox. Toluene was degassed with argon and dried over activated alumina using a solvent purification system, then stored over 4 Å molecular sieves in a glovebox. Benzene-d₆ and toluene-d₈ were obtained from Sigma Aldrich, degassed, and stored over 4 Å molecular sieves in a glovebox. HMDSO was used as received and stored over 4 Å molecular sieves in a glovebox.

Mechanochemical protocol. Planetary milling was performed in a Retsch PM100 or PM200 mill, with 50 mL stainless steel grinding jar type C, with a safety clamp for air-sensitive grinding, and 25 grams of "small" 4.8 mm stainless steel (440 grade) ball bearings (ca. 57 count, $^{3}/_{16}$ in, 0.44 g

ball⁻¹). Select reactions used a 50 mL zirconia jar with 25 grams of 4 mm zirconia ball bearings (ca. 69 count, 0.36 g ball⁻¹).

Mixer milling was performed using a Retsch MM200 with a 15-mL stainless steel Formtech Smartsnap grinding jar and "large" 9.5 mm stainless steel (440 grade) ball bearings (2 count, 3.5 g ball⁻¹); select reactions used "small" stainless steel ball bearings (ca. 16 count, 7 g total). Select reactions used a 15-mL Teflon jar with 11 mm zirconia ball bearings (2 count, 2.9 g ball⁻¹).

In all cases, reagents were added to the jar in a nitrogen-filled glovebox, and after milling, reactions were worked up under nitrogen atmosphere. Ball bearings and jars were thoroughly cleaned with detergent and water, then washed with acetone, and dried prior to use. If needed, 10% aqueous hydrochloric acid was used to remove residual antimony metal before cleaning.

EX ₃	E-X length (Å)	X-E-X (deg)	Next closest E-X ^b [vdW radii] ^c (Å) ^{4,5}	Coord. No.
AsCl ₃ ³	2.161(4)	98.4(5)	N/A [3.60]	3
Asl ₃ ^{4,5}	2.56(7)	99.9(3)	3.55(9) [3.83]	3
SbCl ₃ ⁶	2.36 ^a	94.1ª	3.46–3.74 [3.81]	8 (3+2+3)
Sbl3 4,5	2.83(4)	95.2(2)	3.24(9) [4.04]	6 (3 +3)

Table S1. Structural parameters for EX₃ (E = As, Sb; X = Cl, I)

^a averaged value

^b length of E-X bond of next nearest neighbor.

^c van der Waals radii, as specified in ref. 7 and 8, given in brackets

Each of the four group 15 halides used in this study (AsCl₃, AsI₃, SbCl₃, and SbI₃) possesses a unique structure. The bonding in each is best described as somewhere between ionic and covalent, with ionic character increasing from arsenic to antimony and from chloride to iodide.

Arsenic trichloride is a liquid at room temperature (mp = -16.2 °C). Its molecular structure is a regular trigonal pyramid.³ There are no permanent intermolecular interactions in the liquid form.

Arsenic triiodide is a layered solid with identifiable AsI₃ units. The iodine anions are arranged in a hexagonal close packed lattice with arsenic cations filling two-thirds of the octahedral holes in every other layer.^{4,5} The iodine layers are held together by van der Waals interactions. Each arsenic is covalently bonded to three iodine atoms, with another set of three iodine atoms further away but within the van der Waals radii.^{4,5} Under high pressure (>1.7 GPa), the intermolecular separation of AsI₃ units decreases, new intermolecular bonds form, and the environment around arsenic becomes more symmetric.^{9,10}

The structure of antimony chloride can be described as a zigzag layered structure. There are identifiable SbCl₃ units of pyramidal shape. The antimony atoms intermolecular bonds with five additional chlorides to give antimony a coordination number of eight and a bicapped trigonal prism geometry.^{6,11} The chlorides pack in distorted hexagonal close packing.

Antimony iodide is isostructural with arsenic iodide, but its bonding can be described as more ionic in nature.^{4,5} Discrete Sbl₃ units are observed, with longer intermolecular bonds to three more iodide atoms within van der Waals radii. Under high pressure, the environment around antimony also becomes more symmetrical, shifting from three-coordinate to six-coordinate at pressures above 1.4 GPa.¹²

Experimental Details for the Preparation of [AsA'₃]

Synthetic procedures were based on the synthesis of [AsA'₃] as reported by Rightmire, et al.¹³

Sample mechanochemical synthesis of [AsA'₃] from AsI₃

Inside a glovebox, AsI₃ (red solid, 40 mg, 88 µmol) and K[A'] (tan solid, 63 mg, 280 µmol, 3.2 equiv.) were added to a grinding jar with ball bearings. The jar was sealed with a clamp and milled for the desired time. The jar was opened in the glovebox to reveal an orange solid. The product was extracted with minimal hexanes (< 30 mL) and filtered through a fine-porosity glass fritted funnel. The pale yellow filtrate was dried under vacuum to afford a pale yellow oil with small yellow crystals. The product mixture contained C₁ and C₃ isomers of [AsA'₃] and {A'}₂; the ratio of these products was determined by ¹H NMR in benzene-d₆ or toluene-d₈, using the resonances in the range of 1.9 to 2.6 ppm (Table S1).

Milling conditions (mill type, time, ball and jar material, ball size) were varied as shown in Table S2; $C_1:C_3$, yields of [AsA'₃], and the [AsA'₃]:{A'}₂ ratio are shown in Figures S1-S5.

Product	Chemical shift in benzene-d ₆ (ppm)	Chemical shift in toluene-d ₈ (ppm)	Integration	Multiplicity
C ₃ [AsA' ₃]	2.55	2.50	3H	doublet
C ₁ [AsA' ₃]-a	2.48	2.44	1H	doublet
C ₁ [AsA' ₃]-b	2.27	2.23	1H	doublet
C ₁ [AsA' ₃]-c	2.61	2.57	1H	doublet
{A´}2	2.02	1.99	2H	multiplet

Table S2. ¹H NMR shifts used to determine ratios of C₁ [AsA^{1}], C₃ [AsA^{1}], and {A^{$^{1}}}₂</sup>$

Mill type	Jar material	Ball size	Time (min)	Speed
PBM	SS	Small	5	600 rpm
PBM	SS	Small	10	600 rpm
PBM	SS	Small	60	600 rpm
PBM	ZrO ₂	Small	10	600 rpm
PBM	ZrO ₂	Small	30	600 rpm
PBM	ZrO ₂	Small	60	600 rpm
MM	SS	Large	5	30 Hz
MM	SS	Large	10	30 Hz
MM	SS	Large	30	30 Hz
MM	SS	Large	60	30 Hz
MM	SS	Small	5	30 Hz
MM	SS	Small	10	30 Hz
MM	SS	Small	30	30 Hz
MM	SS	Small	60	30 Hz
MM	Teflon	Large	5	30 Hz
MM	Teflon	Large	10	30 Hz
MM	Teflon	Large	30	30 Hz
MM	Teflon	Large	60	30 Hz

Table S3. Milling conditions for the synthesis of [AsA'₃] without pre-grinding^a

^aEach set of conditions was run a minimum of two times

Figure S1. [AsA'₃] C₁:C₃: Milling Material

Figure S2. [AsA'₃] Yield: Milling Material

Figure S3. [AsA'₃]:{A'}₂ ratio: Milling Material

Figure S4. [AsA'₃] Yield: Ball Size

Figure S5. [AsA'₃]:{A´}₂ ratio: Ball Size

Mechanochemical synthesis of [AsA'₃] from AsCl₃

SAFETY NOTE: This reaction is highly exothermic and should not be performed on a larger scale! In a glovebox, AsCl₃ (colorless liquid, 30 mg, 0.17 mmol) was added to a mixer mill jar with two large stainless steel ball bearings. K[A'] (112 mg, 0.50 mmol) was added, generating a small amount of white smoke from the exothermic reaction. The jar was sealed and milled for 10 min at 30 Hz. After milling, the jar was returned to the glovebox. The jar was opened to reveal a viscous orange substance. The product was extracted with minimal hexanes (< 30 mL) and filtered through a fine-porosity glass fritted funnel. The pale-yellow filtrate was dried under vacuum to afford small yellow crystals. The product mixture contained C₁ and C₃ isomers of [AsA'₃] and {A'}₂; the ratio of these was determined with ¹H NMR in benzene-d₆ or toluene-d₈, using the resonances in the range of 1.9 to 2.6 ppm (Table S1).

Solution synthesis of [AsA'₃] from AsI₃

Similar to the procedure in hexanes solution reported by Rightmire et al.,¹³ [AsA'₃] can be prepared in toluene solution, however, the reaction does not proceed as cleanly. In a glovebox, AsI₃ (50 mg, 0.11 mmol) was dissolved in toluene (6 mL) in a vial to give a deep yellow solution. In a round bottom flask, K[A'] (80 mg, 0.36 mmol) was suspended in toluene (20 mL) to afford an orange suspension. The AsI₃ solution was slowly added to the K[A'] at room temperature and allowed to stir for 3 h. The turbid orange solution was filtered through a fine-porosity glass fritted funnel to provide a yellow filtrate. Toluene was removed by vacuum, affording a mixture of [AsA'₃] and $\{A'\}_2$ as a thin yellow oil and round colorless crystals.

Solution synthesis of [AsA'₃] from AsCl₃

In a glovebox, AsCl₃ (85 mg, 0.47 mmol) was dissolved in toluene (5 mL) in a vial to give a colorless solution. In a round bottom flask, K[A'] (320 mg, 1.43 mmol) was suspended in toluene (20 mL) to afford an orange suspension. The AsCl₃ solution was slowly added to the K[A'] at room temperature and allowed to stir overnight. The hazy yellow solution was filtered through a fine-porosity glass fritted funnel to give a yellow filtrate. Toluene was removed by vacuum, affording a mixture of [AsA'₃] and {A'}₂ as a yellow oil and yellow crystals.

LAG reactions with Asl₃

For selected mechanochemical reactions, a small amount of solvent was added to the dry AsI₃ and K[A'] before grinding. The solvent (hexanes, HMDSO, or THF) was measured with a 1-mL plastic pipette and added directly to the grinding jar. Immediately after the addition of solvent, the grinding jar was sealed and clamped to minimize evaporation. The reaction was milled in the planetary mill for 10 min at 600 rpm, using a 50 mL stainless steel jar and small ball bearings, and worked up as described above. The various LAG conditions are described in Tables S3 and S4; yields of [AsA'₃] and the ratio of [AsA'₃]:{A'}₂ are shown in Figures S6 and S7.

LAG solvent	Equiv. ^a	η (μL/mg)⁰
hexanes	1	0.12
hexanes	2	0.23
hexanes	3	0.35
hexanes	6	0.69
hexanes	14	1.6
hexanes	30	3.3
hexanes	60	6.9
HMDSO	3	0.56
HMDSO	5	0.97

Table S4. Milling conditions for the synthesis of [AsA'₃] under LAG conditions

Each set of conditions was run a minimum of two times. ^a Equiv. of LAG solvent relative to AsI_3 . ^bµL of solvent divided by mg of total reagents

Table S5.	Milling	conditions	for the	synthesis of	[AsA´₃]	under L	AG cond	itions and	results

LAG solvent	Equiv. ^a	η (μL/mg) ^ь	C ₁ :C ₃	[AsA´ ₃]:{A´} ₂
THF	4.5	0.33	N/A	N/A, K[A´] recovered
THF	11	0.81	3.5	0.42
THF	13	0.95	3.3	0.36

^a Equiv. of LAG solvent relative to AsI₃. ^b μ L of solvent divided by mg of total reagents

Figure S6. [AsA'₃] Yield: LAG

Figure S7. [AsA'₃]:{A'}₂ ratio: LAG

Pre-grinding of Asl₃

Select mechanochemical reactions, the metal halide precursor underwent "pre-grinding." Specifically, the metal halide was added to the grinding jar with ball bearings in the glovebox, sealed in a clamp and milled for a specified time (pre-grind time). The jar was returned to the glovebox, then opened and 3 equiv. of K[A'] added. The jar was re-sealed and milled for the reaction time. The reaction was worked up as described above. The various milling conditions used are described in Table S6; yields of [AsA'₃] and the [AsA'₃]:{A'}₂ ratio are provided in Figures S8 and S9.

Pre-grind time (min)	Pre-grind frequency	Reaction time (min)	Reaction Reaction time (min) frequency	
0	N/A	10	600 rpm	PBM
1	600 rpm	10	600 rpm	PBM
5	600 rpm	10	600 rpm	PBM
10	600 rpm	10	600 rpm	PBM
15	600 rpm	10	600 rpm	PBM
20	600 rpm	10	600 rpm	PBM
25	600 rpm	10	600 rpm	PBM
30	600 rpm	10	600 rpm	PBM
45	600 rpm	10	600 rpm	PBM
0	N/A	10	30 Hz	MM
0.5	30 Hz	10	30 Hz	MM
1	30 Hz	10	30 Hz	MM
2	30 Hz	10	30 Hz	MM
5	30 Hz	10	30 Hz	MM
10	30 Hz	10	30 Hz	MM
15	30 Hz	10	30 Hz	MM
30	30 Hz	10	30 Hz	MM
0	NA	5	30 Hz	MM

Table S6. Milling conditions for the synthesis of [AsA'₃] with pre-grinding^a

Table S6 (cont.)

Pre-grind time (min)	Pre-grind frequency	Reaction time (min)	Reaction frequency	Mill type
0.5	10 Hz	5	30 Hz	MM
1	10 Hz	5	30 Hz	MM
2	10 Hz	5	30 Hz	MM
5	10 Hz	5	30 Hz	MM
10	10 Hz	5	30 Hz	MM
15	10 Hz	5	30 Hz	MM

^aEach set of conditions was used a minimum of two times

Figure S8. [AsA'₃] Yield: Pre-Grinding

Figure S9. [AsA'₃] to {A'}₂ ratio: Pre-Grinding

Decomposition study: Milling [AsA'₃] alone or with KI

Prepared [AsA'₃] with {A'}₂ (30 mg) was loaded into a mixer mill stainless jar with either 2 large ball bearings or 16 small ball bearings (total mass of 7 g) and milled at 30 Hz for either 30 or 60 min. ¹H NMR (in C₆D₆) was taken after milling; the ratio of C₁:C₃ and [AsA'₃]:{A'}₂ were compared before and after milling, as shown in Figures S10 and S11 (green arrows).

Prepared [AsA'₃] containing {A'}₂ (30 mg) and potassium iodide (3 equiv.) were loaded into a mixer mill stainless steel jar with either 2 large ball bearings or 16 small ball bearings (total mass of 7 grams) and milled at 30 Hz for either 30 or 60 min. The product was extracted with benzene-d₆, filtered over Celite and glass wool, and ¹H NMR was obtained. The ratio of C₁:C₃ and [AsA'₃]:{A'}₂ were compared before and after milling, as shown in Figures S10 and S11 (blue arrows).

[AsA' ₃] source	Alone or with 3 KI	Ball size	Mill time (min)
Sample A	Alone	Large	30
Sample A	With KI	Large	30
Sample B	Alone	Large	60
Sample B	With KI	Large	60
Sample B	Alone	Small	60
Sample B	With KI	Small	60

Table S7. Conditions for milling decomposition studies.

Decomposition study: Heating [AsA'₃] in toluene-d₈

A solution of $[AsA'_3]$ in toluene-d₈ (pale yellow) was prepared in an NMR tube fitted with a septum NMR cap. The cap was wrapped with Parafilm, after which an initial ¹H NMR spectrum was obtained. The tube was connected to the Schlenk line under nitrogen and heated in a 90 °C oil bath for 7.5 h. After heating the solution was a very pale yellow and some brown precipitate formed. A subsequent ¹H NMR spectrum was obtained. This process was repeated once with a different $[AsA'_3]$ sample. The ratios of C₁:C₃ and $[AsA'_3]$: $\{A'\}_2$ were compared before and after heating, as shown in Figures S10 and S11.

Change in $C_1:C_3$ by milling prepared [AsA'_3]

Figure S10. Change in C₁:C₃ by milling prepared [AsA'₃]

Green arrows show $[AsA'_3]$ milled alone; blue arrows show $[AsA'_3]$ milled with KI. Arrows point from starting value to value after milling or heating.

Figure S11. Change in $[AsA'_3]$ to $\{A'\}_2$ by milling prepared $[AsA'_3]$

Green arrows show $[AsA'_3]$ milled alone; blue arrows show $[AsA'_3]$ milled with KI. Arrows point from starting value to value after milling or heating.

Experimental Details for the Preparation of [SbA'₃]

Synthetic procedures were based on the synthesis of [SbA'₃] as reported by Rightmire et al.¹³

Sample mechanochemical synthesis of [SbA'₃] from SbCl₃

Inside a glovebox, SbCl₃ (solid, 50 mg, 221 µmol) and K[A'] (solid, 155 mg, 690 µmol, 3.1 equiv.) were added to a grinding jar with ball bearings. The jar was sealed with a clamp and milled for the desired time. The jar was opened in the glovebox to reveal a black solid. The product was extracted with minimal hexanes (< 30 mL) and filtered through a fine-porosity glass fritted funnel. The pale-yellow filtrate was dried under vacuum to afford a pale yellow oil with small yellow crystals. The product mixture contained C₁ and C₃ isomers of [SbA'₃] along with {A'}₂; the ratio of these products was determined with ¹H NMR spectra in benzene-d₆ or toluene-d₈, using the resonances in the range of 1.9 to 2.6 ppm (Table S8). The various milling conditions are described in Table S9; the C₁:C₃ ratio, yields of [SbA'₃] and the [SbA'₃]:{A'}₂ ratio are provided in Figures S12–S14.

Product	Chemical shift in C ₆ D ₆ (ppm)	Chemical shift in CH₃C₀H₅ (ppm)	Integration	Multiplicity
C ₃	2.59	2.54	3H	d
C ₁ -a	2.21	2.17	1H	d
C1-p	2.55	2.50	1H	d
C1-C	2.36	2.31	1H	d
A′2	2.02	1.99	2H	m

Table S8. ¹H NMR shifts used to determine ratios of C₁ [SbA'₃], C₃ [SbA'₃], and {A'}₂

Sample mechanochemical synthesis of [SbA'₃] from SbI₃

Inside a glovebox, SbI₃ (pink solid, 31 mg, 61 μ mol) and K[A'] (tan solid, 47 mg, 210 μ mol, 3.4 equiv.) were added to a grinding jar with ball bearings. The jar was sealed with a clamp and milled for the desired time. The jar was opened in the glovebox to reveal a black solid. The product was extracted with minimal hexanes (< 30 mL) and filtered through a fine-porosity glass fritted funnel.

The pale yellow filtrate was dried under vacuum to afford a brown-yellow oil with small crystals. The product mixture contained the C₁ and C₃ isomers of [SbA'₃] along with {A'}₂. The various milling conditions are described in Table S9; the C₁:C₃ ratio, yields of [SbA'₃] and the [SbA'₃]:{A'}₂ ratio are provided in Figures S12–S14.

Sb precursor	Mill type	Jar material	Ball size	Time (min)	Speed
Sbl ₃	PBM	SS	Small	5	300 rpm
Sbl ₃	PBM	SS	Small	10	300 rpm
Sbl ₃	PBM	SS	Small	60	300 rpm
Sbl₃	PBM	ZrO ₂	Small	10	300 rpm
Sbl₃	PBM	ZrO ₂	Small	60	300 rpm
Sbl ₃	MM	SS	Large	10	20 Hz
Sbl₃	MM	SS	Large	15	20 Hz
Sbl₃	MM	SS	Large	60	20 Hz
SbCl₃	PBM	SS	Small	5	300 rpm
SbCl ₃	PBM	SS	Small	10	300 rpm
SbCl₃	PBM	SS	Small	60	300 rpm
SbCl ₃	PBM	ZrO ₂	Small	5	300 rpm
SbCl₃	PBM	ZrO ₂	Small	10	300 rpm
SbCl₃	PBM	ZrO ₂	Small	60	300 rpm
SbCl₃	MM	SS	Large	10	30 Hz
SbCl₃	MM	SS	Large	10	20 Hz
SbCl₃	MM	SS	Large	15	20 Hz
SbCl ₃	MM	SS	Large	60	20 Hz

Table S9. Milling conditions for the synthesis of [SbA'₃] without pre-grinding^a

^aEach set of conditions was used a minimum of two times.

Figure S12. [SbA'₃] C₁:C₃: Mill, Material, Sb source

[SbA'₃] Yield: Mill, Material, Sb source

Figure S13. [SbA'₃] Yield: Mill, Material, Sb source

[SbA']:{A'}₂ ratio: Mill, Material, Sb source

Figure S14. [SbA'₃] to $\{A'\}_2$ ratio: Mill, Material, Sb source

LAG reactions with SbCl₃

For select mechanochemical reactions, a small quantity of hexanes was added to the dry SbCl₃ and K[A'] before grinding. Hexanes was measuring with a 1-mL plastic pipette and added directly to the grinding jar. Immediately after the addition of solvent, the grinding jar was sealed and clamped to minimize evaporation. The reaction was milled in the planetary mill for 10 minutes at 600 rpm, using a 50 mL stainless steel jar and small ball bearings, and worked up as described above. The various LAG conditions are described in Table S10; yields of [SbA'₃] and the [SbA'₃]:{A'}₂ ratio are shown in Figures S15 and S16.

Solution synthesis of [SbA'₃] from SbCl₃

In a glovebox, SbCl₃ (51 mg, 0.22 mmol) was suspended in hexanes (3.49 mL, 120 equiv.) in a vial to give a colorless solution. K[A'] (tan solid, 155 mg, 0.68 mmol) was added slowly while stirring at room temperature and allowed to stir for 2 h. The hazy dark solution was filtered through a fine-porosity glass fritted funnel to give a colorless filtrate and black solid. Hexanes was removed from the filtrate by vacuum, affording a mixture of [SbA'₃] and {A'}₂ as a pale-yellow oil and colorless crystals.

Equiv.	η (μL/mg)		
0 a	0		
1 ^a	0.16		
2 ^a	0.27		
3 ^a	0.40		
6 ^a	0.87		
14 ^a	2.0		
30 ^a	4.2		
60 ^a	8.5		
93 ^b	13.6		
120 ^b	17.0		

Table S10. Conditions for the synthesis of [SbA'₃] from SbCl₃ under LAG or solution conditions

^a Each set of LAG conditions was used a minimum of two times. ^b Reactions conducted once in hexanes solution with stirring.

Figure S15. [SbA'₃] Yield: LAG

Figure S16. [SbA'₃] to $\{A'\}_2$ ratio: LAG

Pre-Grinding of SbCl₃ and Sbl₃

For selected mechanochemical reactions, the metal halide precursor underwent pre-grinding, in which the metal halide was added to the grinding jar with ball bearings in the glovebox, sealed in a clamp and milled for a specified time (pre-grind time). The jar was returned to the glovebox, the jar was opened and 3 equiv. of K[A'] was added. The jar was re-sealed and milled for a specified time (reaction time). The reaction was worked up as described above. The various milling conditions used are described in Table S11; yields of $[SbA'_3]$ and the $[SbA'_3]$: $\{A'\}_2$ ratio are provided in Figures S17–S18.

SbX₃	Pre-grind	Pre-grind	Reaction	Reaction	Mill
shi		Frequency	10 10	200 rpm	ови
Shi	1	200 rpm	10	200 rpm	
5013	T	300 rpm	10	300 rpm	PBIVI
Sbl₃	5	300 rpm	10	300 rpm	PBM
Sbl₃	10	300 rpm	10	300 rpm	PBM
Sbl₃	15	300 rpm	10	300 rpm	PBM
Sbl ₃	30	300 rpm	10	300 rpm	PBM
Sbl₃	45	300 rpm	10	300 rpm	PBM
SbCl ₃	0	NA	10	300 rpm	PBM
SbCl₃	5	300 rpm	10	300 rpm	PBM
SbCl ₃	10	300 rpm	10	300 rpm	PBM
SbCl ₃	15	300 rpm	10	300 rpm	PBM
SbCl ₃	30	300 rpm	10	300 rpm	PBM
SbCl ₃	45	300 rpm	10	300 rpm	PBM
SbCl ₃	60	300 rpm	10	300 rpm	PBM
SbCl ₃	0	NA	10	20 Hz	MM
SbCl ₃	1	20 Hz	10	20 Hz	MM
SbCl ₃	5	20 Hz	10	20 Hz	MM
SbCl ₃	10	20 Hz	10	20 Hz	MM
SbCl ₃	15	20 Hz	10	20 Hz	MM
SbCl₃	30	20 Hz	10	20 Hz	MM
SbCl₃	45	20 Hz	10	20 Hz	MM

Table S11. Milling conditions for the synthesis of [SbA'₃] with pre-grinding

Figure S17. [SbA'₃] Yield: Pre-Grinding

Figure S18. [SbA'₃] to $\{A'\}_2$ ratio: Pre-Grinding

Photographs of Pre-Ground Samples

The photographs below are of Asl_3 in the mixer mill grinding jar after pre-grinding, but before addition of K[A']. Note that the color lightens from red-orange (Figure S19) to yellow (Figure S22) as pre-grinding time or frequency increases and the particle size decreases.

Figure S19. Asl $_3$ ground in the mixer mill at 10 Hz for 30 s.

Figure S20. Asl₃ ground in the mixer mill at 10 Hz for 1 min (left) or 2 min (right).

Figure S21. Asl₃ ground in the mixer mill at 10 Hz for 5 min. (left) or 10 min. (right).

Figure S22. Asl₃ ground in the mixer mill at 30 Hz for 2 min. All pre-grind samples at 30 Hz (30 sec. to 30 min.) appear visually the same.

Scanning Electron Microscopy Procedure for SEM

Two samples were prepared for analysis by scanning electron microscopy (SEM). The unground sample was obtained from commercially available AsI₃, as received. The ground sample was prepared by milling AsI₃ from the same source in the planetary mill for 45 min at 600 rpm using a 50 mL stainless steel jar and 25 g of small ball bearings. Bromopentafluorobenzene was used to transfer particles to a glass slide without dissolving them. The sample was sputter coated with gold for 20 sec. in an argon environment using a Cressington 108 Sputter Coater. Images were taken with a Zeiss Merlin Scanning Electron Microscope equipped with a GEMINI II column, using an accelerating voltage of 2.00 kV, a working distance of 9 mm, and the InLens secondary electron detector.

Figure S23. SEM image of unground Asl₃

Figure S24. SEM Image of ground Asl₃

Powder X-Ray Diffraction Procedure for PXRD

A sample of AsI₃ was ground in the planetary mill for 45 min at 600 rpm using a 50 mL stainless steel jar and 25 g of small ball bearings. A suspension of the powder in hexanes was drop-cast onto a low-background silicon XRD wafer in ambient conditions. Powder X-ray diffraction (XRD) spectra were obtained using a Rigaku SmartLab[®] X-ray Diffractometer with a CuK α source and a D/TeX Ultra 250 detector. The operating voltage and current were 40 kV and 44 mA, respectively. The step size was 0.1 degree at a rate of 10 degrees per minute. The data was used to confirm the sample contained only AsI₃ and no redox products.

Figure S25. PXRD of AsI₃ after grinding

References

- G. Fraenkel, A. Chow, W. R. Winchester. Dynamics of Solvated Li⁺ within *Exo,Exo*-[1,3-Bis(Trimethylsilyl)Allyl]Lithium *N*,*N*,*N*['],*N*[']-Tetramethylethylenediamine Complex. *J. Am. Chem. Soc.* 1990, 112, 1382–1386.
- (2) D. D. Perrin, W. L. F. Armarego. Purification of Laboratory Chemicals, 4th ed.; Pergamon: Oxford, 1997.
- (3) P. Kisliuk, C. H. Townes. The Microwave Spectra and Molecular Structure of Phosphorus and Arsenic Trichloride. *J. Chem. Phys.* 1950, **18** (8), 1109–1110; https://doi.org/10.1063/1.1747872.
- (4) H. C. Hsueh, W. C. K. Poon, H. Vass, J. Crain. Pressure-Induced Electron Transfer in Quasi-Molecular Solids. *Europhys. Lett.* 1996, **35** (9), 689–694; https://doi.org/10.1209/epl/i1996-00171-0.
- (5) Hsueh, H. C.; Chen, R. K.; Vass, H.; Clark, S. J.; Ackland, G. J.; Poon, W. C.-K.; Crain, J. Compression Mechanisms in Quasimolecular XI₉ (X = As, Sb, Bi). *Phys. Rev. B* **1998**, *58* (22), 14812–14822; https://doi.org/10.1103/PhysRevB.58.14812.
- (6) A. Lipka. An X-Ray Structure Redetermination of Antimony Trichloride. *Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem.* 1979, **35** (12), 3020–3022; https://doi.org/10.1107/S0567740879011201.
- (7) A. Bondi. van der Waals Volumes and Radii, J. Phys. Chem., 1964, 68, 441-451.
- (8) M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, D. G. Truhlar. Consistent van Der Waals Radii for the Whole Main Group. J. Phys. Chem. A 2009, **113** (19), 5806–5812; https://doi.org/10.1021/jp8111556.
- A. Anderson, A.; S. K. Sharma; Z. Wang. Raman Study of Arsenic Tri-Iodide at High Pressures. *High Press. Res.* 1996, 15 (1), 43–50; https://doi.org/10.1080/08957959608240459.
- (10) A. Saitoh; T. Komatsu; T. Karasawa. Raman Scattering under Hydrostatic Pressure in Layered Asl₃ Crystals. *Phys. status solidi* 2000, 221 (2), 573–581.
- (11) A. F. Wells. Structural Inorganic Chemistry, 5th ed.; Claredon: Oxford, 1984; pp. 879-884, ISBN 0-19-855370-6.
- (12) H. Kurisu; T. Tanaka; T. Karasawa; T. Komatsu. Pressure Induced Quantum Confined Excitons in Layered Metal Tri-Iodide Crystals. *Jpn. J. Appl. Phys.* **1993**, *32* (S1), 285. https://doi.org/10.7567/JJAPS.32S1.285.
- (13) N.R. Rightmire, D. L. Bruns, T. P. Hanusa, W. W. Brennessel. Mechanochemical Influence on the Stereoselectivity of Halide Metathesis: Synthesis of Group 15 Tris(Allyl) Complexes. *Organometallics* 2016, **35** (11), 1698–1706; https://doi.org/10.1021/acs.organomet.6b00151.