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S1 Mass conservation

We here summarize the consistency condition of the jump of the volume fraction of reactants

at the interface between the product-rich phase and the reactant-rich phase.1 The volume

fraction ψB of reactant B follows the diffusion equation

∂

∂t
ψB = DB

∂2

∂z2

(
Π(ψB)vB
kBT

)
, (S1)

where z is the position in the system and t is the time. DB is the diffusion constant. Π(ψB)

is the osmotic pressure. vB is the volume per molecule. kB is the Boltzmann constant and

T is the absolute temperature. Integrating both sides of Eq. S1 with respect to z around

z = h(t), where the volume fraction ψB jumps between ψB1 and ψB2, leads to

∫ h(t)+∆z

h(t)−∆z

dz
∂

∂t
ψB = DB

∂2

∂z2

(
Π(ψB)vB
kBT

)
. (S2)

The right side of Eq. S2 is evaluated as

DB
∂2

∂z2

(
Π(ψB)vB
kBT

)
= DB

∂

∂z

(
Π(ψB)vB
kBT

)∣∣∣∣
h(t)+∆z

−DB
∂

∂z

(
Π(ψB)vB
kBT

)∣∣∣∣
h(t)−∆z

= −JB(z = h(t) + ∆z) + JB(z = h(t)−∆z). (S3)

The last form of Eq. S5 is derived by using the fact that the flux has the form

JB(z) = −DB
∂

∂z

(
Π(ψB)vB
kBT

)
. (S4)

The left side of Eq. S2 is evaluated as

∫ h(t)+∆z

h(t)−∆z

dz
∂

∂t
ψB =

d

dt

(∫ h(t)+∆z

h(t)−∆z

dzψB

)
− dh(t)

dt
(ψB(z = h(t) + ∆z)− ψB(z = h(t)−∆z))

= −dh(t)
dt

(ψB(z = h(t) + ∆z)− ψB(z = h(t)−∆z)). (S5)
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The last form of eq. (S5) is derived by using the fact that

∫ h(t)+∆z

h(t)−∆z

dzψB = ψB1∆z + ψB2∆z (S6)

for ∆z → 0 and this integral thus does not depend on time. Eqs. S3 and S5 lead to the form

(ψB(z = h(t) + ∆z)− ψB(z = h(t)−∆z))
dh(t)

dt
= JB(z = h(t) + ∆z)− JB(z = h(t)−∆z).(S7)

Taking the limit ∆z → 0 to both sides of Eq. S7 leads to the form

(ψB2 − ψB1)
dh(t)

dt
= JB2 − JB1, (S8)

with JB1 = lim∆z→0 JB(z = h(t) − ∆z) and JB2 = lim∆z→0 JB(z = h(t) + ∆z). Eq. S8

indeed represents the mass conservation at z = h(t). The jump of the volume fraction ψB at

z = h(t) is consistent with Eq. S1 as long as the time evolution of the interface is given by

Eq. S8 and the condition Π(ψB1) = Π(ψB2) is satisfied.

S2 Lubrication approximation

We here summarize the simplification of Stokes equation by using the lubrication approxi-

mation.2,3 The Stokes equation represents the balance of the forces arising from the gradient

of hydrostatic pressure p and the forces due to the mechanical stress σ,

−∇p(r) +∇ · σ(r) = 0. (S9)

The gradient ∇ is represented as

∇ = er
∂

∂r
+ eϕ

1

r

∂

∂ϕ
+ ez

∂

∂z
(S10)
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in the cylindrical coordinate system, where er is the unit vector to the radial direction, eϕ is

the unit vector the azimuthal direction, and ez is the unit vector to the z-direction, see Fig.

4 in the main article.

The mechanical stress is represented by the components in the cylindrical coordinate

system,

σ = σrrerer + σrϕereϕ + σrzerez

+σϕreϕer + σϕϕeϕeϕ + σϕzezeϕ

+σzrezer + σzϕezeϕ + σzzezez (S11)

The force f applied by mechanical stress σ

f = ∇ · σ. (S12)

have the form

f = frer + fϕeϕ + fzez (S13)

with

fr =
1

r

∂

∂r
(rσrr)−

σϕϕ
r

+
∂σrz
∂z

+
1

r

∂σrϕ
∂ϕ

(S14)

fϕ =
1

r

∂

∂r
(rσϕr) +

1

r

∂σϕϕ
∂ϕ

+
σrϕ
r

+
∂σϕz
∂z

(S15)

fz =
1

r

∂

∂r
(rσzr) +

1

r

∂σzϕ
∂ϕ

+
∂σzz
∂z

. (S16)

Because of the cylindrical symmetry, ∂
∂ϕ

= 0 and σrϕ = σϕr = σzϕ = σϕz = 0, Eqs. S14 - S16
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are reduced to

fr =
1

r

∂

∂r
(rσrr)−

σϕϕ
r

+
∂σrz
∂z

(S17)

fϕ = 0 (S18)

fz =
1

r

∂

∂r
(rσzr) +

∂σzz
∂z

. (S19)

Now we treat the dynamics of a fluid between cylindrical surfaces of radius r0, see Fig. 4

in the main article. The cylindrical surfaces are rigid bodies and their radius is fixed, while

the thickness h(t) of the fluid depends on time. The first and second terms of Eq. S17 are

in the order of σrr/r0 and σϕϕ/r0, while the third term of Eq. S17 is in the order of σrz/h(t)

by using the estimate ∂
∂r

≈ 1
r0

and ∂
∂z

≈ 1
h(t)

. In the limit of h(t) ≪ r0, the third term of Eq.

S17 dominates the first and second terms of this equation. Similarly, the first term of Eq.

S19 is in the order of σzr/r0, while the second term of Eq. S19 is in the order of σzz/h(t). In

the limit of h(t) ≪ r0, the second term of Eq. S19 dominates the first term of this equation.

This order of magnitude argument leads to the approximate forms of Eqs. S17 - S19,

fr =
∂σrz
∂z

(S20)

fϕ = 0 (S21)

fz =
∂σzz
∂z

.. (S22)

Eq. S9 is decomposed to components

− ∂

∂r
p(r) +

∂σrz
∂z

= 0 (S23)

− ∂

∂z
p(r) +

∂σzz
∂z

= 0. (S24)

Eq. S23 is equal to Eq. 8 in the main article. Integrating Eq. S24 with respect to z leads to

−p(r) + σzz(r) = −σ⊥(r) (S25)
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Eq. S25 represents the fact that the applied normal stress σzz(r) is balanced with hydrostatic

pressure p(r).

In the above argument, one might wonder the dependence of the stress components, σrr,

σϕϕ, σzz, and σrz, on the radius r0 and the thickness h(t). We here estimate the order of

these stress components for viscous fluids. The viscous stress has the form

σ = 2ηϵ̇, (S26)

where ϵ̇ is the strain rate tensor. The strain rate tensor has the form

ϵ̇ =
1

2
((∇v) + T(∇v)), (S27)

where v = vrer + vϕeϕ + vzez is the velocity field in the fluid and T is the transpose. This

tensor is represented with the components of the cylindrical coordinate system

ϵ̇ = ϵ̇rrerer + ϵ̇rϕereϕ + ϵ̇rzerez

+ϵ̇ϕreϕer + ϵ̇ϕϕeϕeϕ + ϵ̇ϕzezeϕ

+ϵ̇zrezer + ϵ̇zϕezeϕ + ϵ̇zzezez (S28)
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with

ϵ̇rr =
∂vr
∂r

(S29)

ϵ̇ϕϕ =
1

r

∂vϕ
∂ϕ

+
vr
r

(S30)

ϵ̇zz =
∂vz
∂z

(S31)

ϵ̇rϕ = ϵ̇ϕr =
1

2

(
∂vϕ
∂r

+
1

r

∂vr
∂ϕ

− vϕ
r

)
(S32)

ϵ̇ϕz = ϵ̇zϕ =
1

2

(
1

r

∂vz
∂ϕ

+
∂vϕ
∂z

)
(S33)

ϵ̇zr = ϵ̇rz =
1

2

(
∂vz
∂r

+
∂vr
∂z

)
. (S34)

Because of the cylindrical symmetry of the system, ∂
∂ϕ

= 0 and vϕ = 0, the components of

the stress tensor has the form

σrr = 2η
∂vr
∂r

(S35)

σϕϕ = 2η
vr
r

(S36)

σzz = 2η
∂vz
∂z

(S37)

σrz = σzr = η

(
∂vr
∂z

+
∂vz
∂r

)
(S38)

and σrϕ = σϕr = σϕz = σzϕ = 0.

Eqs. S35 - S38 suggest that σrr and σϕϕ are in the order of ηvr/r0, while σrz is in the

order of ηvr/h(t). This ensures that the third term of Eq. S17 dominates the first and second

terms of Eq. S17 in the limit of h(t) ≪ r0. We note that the first term Eq. S38 dominates

the second term of Eq. S38 in this limit. These estimates and Eq. S23 lead to the fact that

the hydrostatic pressure p is in the order of ηr0vr/h(t). σrz is in the order of ηvr/h(t), see Eq.

S38 and the discussion above, while σzz is in the order of ηvz/h(t), see Eq. S37. The first

term of Eq. S24 is estimated as ηr0vr/h
2(t) by using the above estimate of the hydrostatic

pressure and thus dominates the contribution of σrz to the second term of Eq. S24, where
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this contribution is estimated as ηvr/(r0h(t)), see the first term of Eq. S19 and the above

estimate of σrz. The first term of Eq. S19 is thus negligible and this treatment leads to Eq.

S24.

In Eq. S24, we have tentatively left the contribution of σzz to the second term of Eq.

S24 because σzz is in the order of ηvz/h(t) and the order estimate vz relative to vr is not

specified. Eq. S24 leads to Eq. S25. We solve Eq. S23 with the incompressibility condition

1

r

∂

∂r
(rvr) +

∂vz
∂z

= 0. (S39)

Eq. S39 implies that vz is in the order of h(t)vr/r0. σzz is thus estimated as ηvr/r0 and

is much smaller than the hydrostatic pressure, which is in the order of ηr0vr/h(t), see the

above discussion. Therefore, Eq. S25 is further reduced to

−p(r) = −σ⊥(r). (S40)

We note that Eq. S40 is valid only for incompressible fluids; if not, one should use Eq. S25s.
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