Combined hydrothermal and mechanochemical control of structural modifications of zirconium dioxide for catalytic applications

Sydorchuk V., Levytska S., Kiziun O., Vasylechko L., Simkovicova K., Valtera S., Billinghurts B. E., Vajda S., Olszowka J. E.

Supplementary Materials

Samples	Tetragonal			Monoclinic		
	X _t , %	V _t , %	D _t , nm	X _m , %	V _m , %	D _m , nm
N5-9.5_HX	54	47	9.3	46	53	12.5
N6-9.5_HXM_300	12	9	5.5	88	91	12.1
N7-9.5_HG	60	53	6.9	40	47	9.6
N8-9.5_HGM_300	15	12	5.2	85	88	8.9

Table S1. The content of tetragonal and monoclinic phases in the samples based on ZrO_2 precipitated at pH 9.5

Figure S5. Temporal changes in spectra of safranin T solution in the presence of sample N19-7H7hGM_500_0.5_25.

