

Fig. S0 X-ray diffraction of MgNiCo/AlInSc LDH sample before (black line) and after (red line) additional crystallization in 0.1 M Na₂CO₃ solution

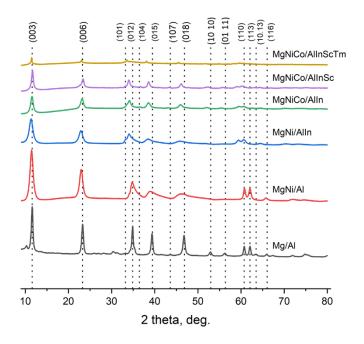


Fig. S1 Non-normalized X-ray diffraction of the LDHs from Mg/Al to MgNiCo/AlInScTm

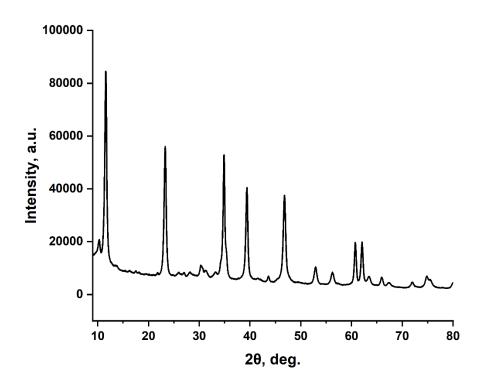


Fig. S2 X-ray diffraction of Mg/Al LDH sample

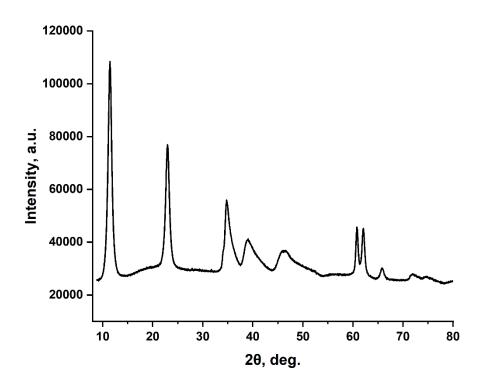


Fig. S3 X-ray diffraction of MgNi/Al LDH sample

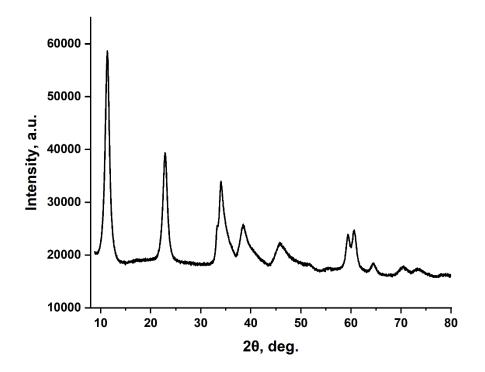


Fig. S4 X-ray diffraction of MgNi/AlIn LDH sample

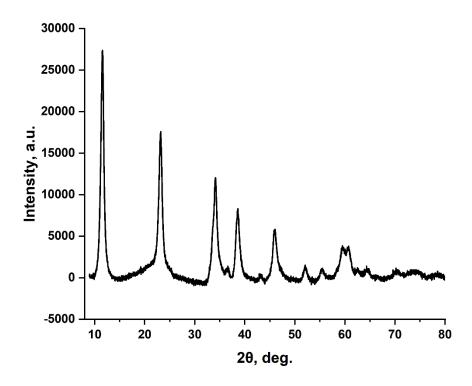


Fig. S5 X-ray diffraction of MgNiCo/Alln LDH sample

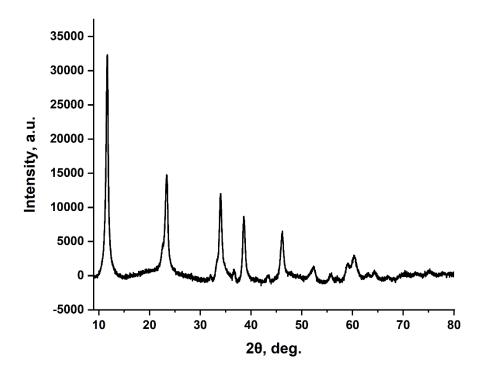


Fig. S6 X-ray diffraction of MgNiCo/AlInSc LDH sample

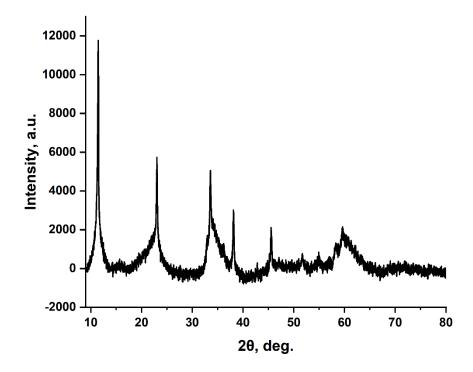


Fig. S7 X-ray diffraction of MgNiCo/AlInScTm LDH sample

Full synthesis procedure

MgNiCo/AlInSc LDH as an example.

 Me^{2+}/Me^{3+} cation ratio = 3/1

Sum of divalent cations (Mg+Ni+Co) = 5 mmol, they were taken in an equimolar amount, so each one is 1.67 mmol.

Sum of trivalent cations (Al+In+Sc) = 1.67 mmol, they were also taken in an equimolar amount so each one is 0.56 mmol.

Initial reagents were mixed in an agate mortar and manually ground for 5 minutes at room temperature. After a homogeneous powder was obtained, solid Na_2CO_3 (25 mmol) and NaOH (5 mmol) were added to it, and the mixture was subsequently ground for 30 minutes to obtain a viscous homogeneous paste. The paste was washed with distilled water (100 ml) into the hydrothermal synthesis vessel. The vessel was sealed and left for one day at 98 °C. We found experimentally that adding an additional saturated alkaline solution in the middle of the hydrothermal treatment of mechanochemically synthesized samples promoted the crystallization degree, so after 24 hours at 98 °C, the vessel was cooled for another day, and then a 0.1 M Na_2CO_3 solution (100 ml) was added to the reaction mixture and left for two days at 98 °C. Then the vessel was cooled for a day, and the resulting precipitate was separated by centrifugation, washed with equivalent amount of distilled water three times, and then dried at 50 °C for two days.

Configurational entropy calculation example

Element	Weight %			
ск	9.66			
ок	48.08			
Mg K	2.17			
AI K	2.10			
Sc K	3.25			
Co K	12.85			
Ni K	13.56			
In L	8.33			

Fig. S8 EDAX results for 1 point on a MgNiCo/AlInSc LDH

Nº of point	Mg	Al	Sc	Со	Ni	In
1	2.75	2.83	3.91	14.65	15.98	9.26
2	2.53	2.28	4.00	18.11	19.98	9.92
3	2.57	2.29	4.31	19.61	21.54	11.03
4	2. 59	2.23	3.94	18.81	20.73	9.71
5	2.60	2.31	3.87	17.22	18.83	9.78
6	3.87	2.96	2.75	10.98	12.20	1.32
7	2.71	2.41	3.62	19.39	21.77	9.21
8	2.00	1.85	3.11	13.39	14.39	8.11
9	1.29	1.19	2.63	12.10	13.18	6.92
10	2.55	2.29	3.86	16.94	18.27	9.93
11	2.80	2.52	3.70	15.73	17.07	9.49
12	2.17	2.10	3.25	12.85	13.56	8.33
Mean	2.54	2.27	3.58	15.82	17.29	8.58
Atomic weight	24.305	26.98	44.96	58.93	58.69	114.82
Amount of substance	0.10	0.08	0.08	0.27	0.29	0.07
Mole fraction	0.12	0.09	0.09	0.30	0.33	0.08

Experimental Me^{2+}/Me^{3+} cation ratio = (0.12+0.33+0.30)/(0.09+0.08+0.09) = 2.9

$$S_{conf} = -R \sum_{i=1}^{N} x_i ln x_i$$

Where x is a mole fraction of each Me, so

-R*((0.12*ln(0.12))+(0.09*(ln(0.09))+ (0.09*(ln(0.09))+(0.30*(ln(0.30))+(0.33*ln(0.33))+0.08*(ln(0.08)))= **1.62R**

Crystallinity index

<u>https://youtu.be/D65k1yHPKaM?si=42R4udu4WEpKxjfK</u> – we calculated the crystallinity indexes of our samples using this method of Dr. Shahid Ali from the Department of Physics, University of Peshawar.

Microstrain calculation

<u>https://youtu.be/T95MDQStcGY?si=BvKC_Jw2QaV_31SV</u> – we calculated the microstrains of our samples using the Halder-Wagner-Landford method described on this channel.