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1 Phase shifts

Here we reproduce the analytical expression for the phase shifts deduced in the supplemental material of

Ref. [1I:
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Recall that d,, is a function of k through the Bessel functions Y, = Y,,(ka), Jn = Jm(ka), and z, =
| Bela?/ 200 (a is the radius of the cylindrical defect). The analytical expression for the T-matrix elements in
terms of the phase shifts d,,(k) for each angular momentum channel m € Z are [2]
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where ¢ is the scattering angle between k|| and k’|. Recall that k| = (k;, k,) are momentum vectors on the

plane perpendicular to the dislocations’ axis.
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2 Vertex corrections

The self-energy contribution modifies the definition of the retarded and advanced Green’s functions as de-
picted by the double lines in Fig. b). However, there are also scattering processes involving links between
the two internal Green function lines, as depicted in Fig. (a). When considering such diagrams with cross-

links, as in Fig. a), we must include the vertex correction as depicted in Fig. b), where the vertex function

() (b)

Fig. 1: (a) A typical diagram contributing to the Onsager coefficients in Eq (??), involving the configurational
average of the two internal GF with cross-links between them. The upper line corresponds to the
retarded GF and the lower to the advanced GF. (b) Diagrammatic representation of the two complete
averaged GF (double lines) corresponding to the sum of all diagrams of the kind in (a) with the vertex
correction T'(k).

Tra(k) = >k n >PRA<k'>

Fig. 2: The Bethe-Salpeter integral equation for the vertex function I' g4 (k).

T'ra(k, E) is the solution to the Bethe-Salpeter equation as depicted in Fig. [2l Then, we have

Trak, B) =k + nd/ (C;?)'; (G5 )) (V00 [N, ‘2 Tra(K, E). (3)
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The vertex function must be parallel to the k vector in Eq. , such that we write

T'ra (kv E) = V(kv E)k’ (4)

and given the expression for the retarded Green’s functions in Eq. (7) of the main article, in terms of the

relaxation time we have

1
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Therefore, the product of the retarded and advanced averaged Green’s functions is
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In the limit of low concentration of dislocations, i.e., ng — 0, is proportional to a very narrow Lorentzian
distribution, with support at £ = Sl(f’\); for calculation purposes can be approximated by a delta function.

Then
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Then, we obtain a secular integral equation for the scalar function y(k, E)
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3 Onsager and transport coefficients
Let us compute the correlation functions
iy oo B . .
L6 = 1 / dt et / 48’ Tt [ oo~ — B8]y (9)
0 0

We start with Eq. (9) and take the trace in the complete and orthonormal basis {|Wy )} of the total
Hamiltonian, such that gg [Pk ) = po (51(5)‘)) |Uk x). Then, using the representation of operators in the

Heisenberg picture, and po(E) = e #(F~#) /= we have
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The numerator of the first square bracket contains a term, — (5 &) — & o ’5)) which is odd with respect
to the integration variables. Consequently, this term does not contribute to the overall value. As anticipated,

there is no imaginary part remaining. To calculate the real part, we employ

I ,
lim, . = (& - 9. (11)
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Now, it is important to notice that the equilibrium average of the statistical operator produces the Fermi

distribution function. Then, for the term in the second square bracket we have
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Thus, using the general expression for the current operators, i.e., j5(r) = fvop(HS — p)'~! |r)o(r], and the

properties of the spectral function as presented in Ref. [2] we get
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The form of the spectral density in coordinates space is
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If we insert this form into the Eq., we have
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Let us define R = r — r’. Finally, we compute the corresponding Onsager coefficient as
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Then, the Onsager coefficientes are computed from their Fourier transforms by taking the limit of g — 0.

We have
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From the SU(2) algebra, we can readily obtain the trace
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and hence we have
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Now, assuming for the moment that the system is homogeneous and isotropic, we can write
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Finally, using the definition of the spectral function in terms of the retarded and advanced disorder-averaged

Green’s functions,
AR B) =i [(G5V 0 B)) - (G500 B))] (21)

we obtain (in the limit of low concentrations ng < 1)
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Note that the only part that gives a non-zero contribution is the one given by the product of the retarded
and the advanced GFs. This is because, as can be seen from Eq., the poles of <G5§’\)(k)> are located
entirely in the lower complex half-plane, and therefore, when evaluating the product two <G$§)‘) (k)>, a
contour can be chosen such that the result is zero. The same can be said for the product of two <GE§>‘) (k)>2.

Now, by including the vertex corrections, as described in Ref. [2], it formally accounts by replacing one

of the factors k = I'ga(k; E) in Eq., such that we have
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From the analysis presented in Section [2| we know that the vertex function T'ra(k, E) is given as the
solution to the Bethe-Salpeter equation, where I'ra(k, E) = v(k, E') k and the scalar function vy(k, E) satisfies
the secular equation in Eq. . It should be noted that the result in Eq. needs to be substituted in Eq..
From this, it is evident that at low temperatures, an exact solution is possible since the derivative of the
Fermi distribution, given by

_B@SEE) _ kBLTfO(E) (1= fo(E)], 2y

has a compact support at the Fermi energy. Therefore, we can evaluate v(k; F) and 7(5’\)(16) at the Fermi

momentum k% in Eq. to obtain
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Taking into account that cos ¢’ = k - k’/k? and defining

S (88 - &8 | " cos @ (26)
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we can solve for y(k%,), i.e.,
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Substituting the result in Eq., the derivative of the Fermi’s distribution in Eq., and (k) from Eq.

in the Eq., we get for the bulk Onsager coefficients
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But the energy is of the form Sl((&) = £Mhvpk, then it only depends on the magnitude of k and we can

perform the angular integration. Then
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Here, the total transport relaxation time is defined by
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The closed expression for the transport relaxation time in terms of the scattering phase shifts 4., (k) is

1 _ Znavr i sin? (8 (k) — 601 (k)| (31)
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which corresponds to Eq. (31) in the main text. Now, we compute the integral in Eq. . First, we note
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that fo(e) [1 — fo(e)] = fo(e) fo(—¢€) is an even function of its argument. Then we can write
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because £A = +1 depending on A and £ have the same or different sign. We make the change of variables
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for n = 2,3, 4. Using the integral representation of the Polylogarithm function
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and the derivative relation

d Ay 1 i
@Lls(fe ) = Lis_1(—e"), (40)

one can show that the integral of interest is

I, = —n! Li, (—ef). (41)

Thus, for ¢ = 7 = 1 we have

(42)
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but Aé'f, =&p— 515/1/ =&\ Fk’% is simply the energy difference between the Fermi level (chemical potential)
and the Weyl node. After replacing this in Eq. we get
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For the case i = 1,5 = 2 we have
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and the corresponding Onsager coefficient is obtained replacing this result in Eq.
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Finally, for the case i = j = 2, we get
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Replacing this last result in Eq. we obtain
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