Photoelectrochemical Performance of Nanostructured BiVO₄/NiOOH/FeOOH – Cu₂O/CuO/TiO₂ Tandem Cell for Unassisted Solar Water Splitting

S.R.Sitaaraman^{1,2}, A. Nirmala Grace¹, Jiefang Zhu³, Raja Sellappan^{1*}

¹Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, India-632014.

²Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Ramapuram, Chennai, India-600089.

³Department of Chemistry - Ångström Laboratory, Uppsala University, 75121 Uppsala, Sweden

*Corresponding author: raja.sellappan@vit.ac.in

Supplementary Information

Figure S1, Cross sectional FESEM micrograph of (a) BiVO₄/FeOOH/NiOOH photoanode and (b) Cu₂O/CuO/TiO₂ photocathode, (c) Highlighted cross section for BiVO₄ nanostructures

Figure S2, EDS color mapping of BiVO₄/NiOOH/FeOOH photoanodes

Figure S3, EDS color mapping of Cu₂O/CuO/TiO₂ photocathode

Raman Peak (cm ⁻¹)	Peak significance	
Photoanode		
207.79	External mode of monoclinic BiVO ₄	
324.06 & 369.52	Symmetric and Asymmetric deformation of VO ₄ ³⁻	
819.78	Symmetric stretch mode of V – O	
Photocathode		
207.05	Second order Raman peak of cubic Cu ₂ O	
614.56	Infrared allowed mode of Cu ₂ O	
293.96	Characteristic peak of CuO	

Table S1, Tabulation of significance of obtained Raman vibrational spectra of $BiVO_4$ photoanodes and Cu_2O photocathodes

Photoelectrodes	Bandgap (eV)	
Photoanodes		
BiVO ₄	2.37 eV	
BiVO ₄ /FeOOH	2.37 eV	
BiVO ₄ /NiOOH	2.41 eV	
BiVO ₄ /FeOOH/NiOOH	2.30 eV	
BiVO ₄ /NiOOH/FeOOH	2.31 eV	
Photocathodes		
Cu ₂ O	2 eV	
Cu ₂ O/CuO	1.87 eV	
Cu ₂ O/CuO/TiO ₂	1.55 eV	
CuO	1.54 eV	

Table S2, Tabulation of absorption edge and bandgap of $BiVO_4$ photoanodes and Cu_2O photocathodes

Figure S4, Equivalent circuit of BiVO₄ and Cu₂O photocathodes obtained from Scribner's Z-View software under instant fit which is Randles-Ershel model

Figure S5, Photostability (j vs t) curves of (a) BiVO₄, BiVO₄/FeOOH/NiOOH photoanodes and (b) Cu₂O, Cu₂O/CuO/TiO₂ photocathodes tested in 0.1 M Na₂SO₄ (pH 6) in AM 1.5 G equipped illumination source with power intensity of 100 mW cm⁻²

Photoelectrodes	Operating current density (mA cm ⁻²)	Operating voltage (V) vs RHE
BiVO ₄ /NiOOH/FeOOH vs Cu ₂ O/CuO/TiO ₂	0.344 mA cm ⁻²	0.51 V
BiVO ₄ /NiOOH/FeOOH Vs Cu ₂ O/CuO/TiO ₂ (illumination to photocathode filtered by photoanode)	0.202 mA cm ⁻²	0.42 V

Table S3, Tabulation of operating points of the proposed tandem PEC cell obtained by overlayed absolute LSV responses.

Calculation of Solar-to-Hydrogen conversion efficiency

$$\eta_{\text{STH}} = \frac{J_{op} \times 1.23 V}{P_{in}} \qquad (1.1)$$

Where η_{STH} is the solar-to-hydrogen conversion efficiency, J_{op} is the current density at the operating point and P_{in} is the power density of the incident illumination.

Figure S6, Photograph of constructed BiVO₄-Cu₂O tandem PEC cell