Supporting information

Precise Synthesis of Copper Selenide Nanowires with Tailored Cu Vacancies through Photo-Induced Reduction for Thermoelectric applications

Shunya Sakanea,*, Tatsuki Miurab, Kazuki Munakatab, Yusuke Morikawab, Shunichiro Miwab, Riku Yamanakac, Toshiki, Sugac, Akito Ayukawaa, Haruhiko Udonoa, Hideki Tanakab,*

a. Graduate School of Science and Engineering, Ibaraki University, 4-12-1, Nakanarusawa-cho, Hitachi, Ibaraki, Japan

b. Faculty of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo, Japan.

c. Faculty of Science, Toho University, 2-2-1, Miyama, Funabashi-shi, Chiba, Japan
Supporting Figures

Fig. S1 (a) Surface and (b) cross sectional SEM images of Cu$_{2.00}$Se NW films after pressing.

Fig. S2 A SEM image of Cu$_{2.00}$Se NW with high magnification.
Fig. S3 (a) Seebeck coefficient (S) and (b) Hall mobility (μ) as a function of carrier concentration of Cu$_{2+x}$Se NWs and bulk Cu$_2$Se [S1, S2].

Fig. S4 $S^2\sigma$ of Cu$_{2.00}$Se NWs (this work) as a function of the fabrication temperature, where the data of polycrystalline films [S3-S5] and epitaxial films [S6] were plotted.
Fig. S5 XRD patterns of the samples synthesized by light irradiation for 0-12 hours.

Fig. S6 XRD patterns of (a) Cu$_{1.8}$Se NWs and (b) CuSe NWs. Cu$_{1.8}$Se (CuSe) NWs were synthesized with used Cu/Se ratio of 1.8 (1.0) by light irradiation for 12 (30) hours.
Fig. S7 (a) S and (b) $S^2\sigma$ as a function of σ of α-Cu$_{2+x}$Se NWs, β-Cu$_{1.8}$Se NWs and CuSe NWs.
References

(S1) Yu, J.; Zhao, K.; Qiu, P.; Shi, X.; Chen, L. Thermoelectric Properties of Copper-Deficient Cu_{2-x}Se ($0.05 \leq x \leq 0.25$) Binary Compounds. *Ceram. Int.* **2017**, *43*, 11142-11148.

