Supplementary Information (SI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2024

Supporting Information

for

Porous Pillar[6]arene-Based Polymers for Reversible Iodine Capture

Shujie Lin, Ziliang Zhang, Di Gao, Longming Chen, Chengyang Tian, Junyi Chen,* Qingbin Meng*

State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China.

Table of Contents

1 General materials and methods	S3
1.1 Materials	S3
1.2 Instruments	S3
1.3 Iodine capture experiments in aqueous solution	S3
1.4 Iodine capture experiments in n-hexane	S4
1.5 Iodine vapor uptake experiments	S4
1.6 Regeneration and recycling experiments	S5
2 Synthetic procedures	S 6
3 Supporting results and experimental raw data	S7
3.1 FT-IR spectra of M-OH and MPs	S7
3.2 Gas adsorption and porosity measurements	S 8
3.3 Calibration curve of iodine in aqueous solution for adsorption study	S10
3.4 Iodine capture speed monitoring in aqueous solution	S11
3.5 Selective adsorption experiments	S15
3.6 Comparison of adsorption capacity	S16
3.7 Calibration curve of iodine in n-hexane for adsorption study	S17
3.8 Iodine capture speed monitoring in n-hexane	S18
3.9 PXRD patterns of iodine and I ₂ @P-P6APs	S22
3.10 FT-IR spectra of P-P6APs and I ₂ @P-P6APs	S23
3.11 The sixth recycling experiments	S24
References	S25

1 General materials and methods

1.1 Materials

All the reagents and solvents were commercially available and used as received unless other specified purification. Perhydroxylated pillar[6]arene (P6A-OH) was literature method.¹ Hydroquinone synthesized according to a (M-OH),decafluorobiphenyl (DFB) and iodine (I₂) were purchased from Innochem (Beijing, China). Potassium iodide (KI), n-hexane, potassium carbonate $(K_2CO_3),$ N,N-dimethylformamide (DMF) and methanol (MeOH) were purchased from Sinopharm Chemical Reagent Beijing. Activated carbon (AC) was purchased from Henan Xingnuo Environmental Protection Material Co.,Ltd.

1.2 Instruments

Ultraviolet-visible (UV/vis) spectroscopy was performed on a Cary 300 Agilent UV/vis spectrometer. The morphology was imaged by scanning electron microscopy (SEM, Hitachi Regulus SU8010, operated at 5 kV). Fourier transform infrared spectroscopy (FT-IR) spectra was recorded on a JOSVOK FTIR-1500 spectrometer. The surface area and pore size distribution analysis of polymers were performed on a Quantachrome Autosorb-iQ gas adsorption and pore size analyzer, using N₂ adsorption and desorption at 77.3 K. Samples were degassed at 80 °C under high vacuum for 24 h prior to the N₂ adsorption and desorption analysis. Powder X-ray diffraction (PXRD) analysis was performed in X-ray powder diffractometer (Rigaku Ultima IV).

1.3 Iodine capture experiments in aqueous solution

In order to monitor the iodine capture of P-P6APs in aqueous solution, a time-dependent UV/vis measurement was carried out. AC and MPs were set up as positive and negative controls, separately. Firstly, prepare 100,000 ppm I₂/KI aqueous (1g KI and 1 g I₂ in 10 mL H₂O) and dilute it to 250 ppm I₂/KI_(aq). Then, P-P6APs (6.0 mg), AC (6.0 mg) and MPs (6.0 mg) were added respectively to an 250 ppm I₂/KI_(aq) (6 mL) with shaking. The UV/vis spectrum of the solution was recorded over time.

The I₂/KI_(aq) concentration was determined with UV/vis spectroscopy according

to a standard curve.

The I₂ uptake efficiency was calculated with the following equation:

$$I_2$$
 uptake efficiency = $\frac{(C_0 - C_t)}{C_0} \times 100\%$

 C_0 (ppm) is the concentration of $I_2/KI_{(aq)}$ before uptake and C_t (ppm) is the concentration of $I_2/KI_{(aq)}$ at various time after adding adsorbent materials.

1.4 Iodine capture experiments in n-hexane

To further explore whether P-P6APs is also possible to capture iodine from organic solution, a UV/vis measurement based on iodine/n-hexane solution was carried out. In the same way, AC and MPs were set up as positive and negative controls, separately. P-P6APs (24.0 mg), AC (24.0 mg) and MPs (24.0 mg) were added respectively to an iodine/n-hexane solution (1.0 mM, 6 mL) with shaking. The UV/vis spectrum of the solution was recorded over time.

The concentration of iodine/n-hexane solution was determined with UV/vis spectroscopy according to a standard curve.

The I₂ uptake efficiency was calculated with the following equation:

$$I_2$$
 uptake efficiency = $\frac{(C_0 - C_t)}{C_0} \times 100\%$

C₀ (mM) is the concentration of iodine/n-hexane solution before uptake and C_t (mM) is the concentration of iodine/n-hexane solution at various time after adding adsorbent materials.

1.5 Iodine vapor uptake experiments

To examine the uptake ability of P-P6APs for iodine vapor, time-dependent iodine vapor uptake experiments based on gravimetric measurements were performed in the following procedure: Similarly, AC and MPs were set up as positive and negative controls, separately. 15 mg of adsorbent materials, namely, P-P6APs, AC and MPs were taken in a preweighed glass vessel (2 mL). And then the glass vessel containing samples was transferred in bigger sealed glass vial (20 mL). 500 mg molecular iodine was placed in bigger glass vial maintaining no physical contact between iodine and adsorbent materials. Next, the closed container was heated at 80 °C in bake oven. After iodine vapor adsorption over time, the iodine-loaded adsorbent

materials were cooled down to room temperature and weighted. The iodine uptake capacities for adsorbent materials were calculated by weight gains:

$$I_2$$
 uptake efficiency = $\frac{(W_a - W_b)}{W_b} \times 100 \text{wt}\%$

 W_a is the mass weight of adsorbent materials before iodine vapor adsorption and W_b is the mass weight of adsorbent materials after iodine vapor adsorption at various time.

1.6 Regeneration and recycling experiments

I₂@P-P6APs were immersed in MeOH (2mL) for desorption of the iodine/iodide, during which the solvent was decanted and washing repeatedly several times. After complete release (no color change happened when the samples were immersed in MeOH), the resultant samples were desolvated under vacuum at 100 °C over 4 h to achieve regeneration and the regenerated samples were used for the next cycle under the same adsorption conditions. Repeat 5 regenerative cycles and calculate I₂ adsorption efficiency to appraise the recyclability of P-P6APs.

2 Synthetic procedures

Syntheses of P-P6APs: A suspension of P6A-OH (0.50 g, 0.68 mmol), decafluorobiphenyl (0.27 g, 0.82 mmol) and K_2CO_3 (1.69 g, 12.24 mmol) in DMF (25 mL) was heated at 100 °C for 72 h under N_2 . The precipitate was filtered and washed with 1N HCl (25 mL \times 3), H₂O (25 mL \times 3), MeOH (25 mL \times 3), THF (25 mL \times 3) and DCM (25 mL \times 3). The solid was dried under high vacuum to yield P-P6APs as a black solid.

HO—OH + F F F F
$$\frac{K_2CO_3/DMF}{100 \, {}^{\circ}C/72 \, h}$$
 $\frac{F_n}{M-OH}$ DFB MPs

Syntheses of MPs: A suspension of M-OH (4.01 g, 36.33 mmol), decafluorobiphenyl (2.20 g, 6.58 mmol) and K_2CO_3 (13.00 g, 94.06 mmol) in DMF (150 mL) was heated at 100 °C for 72 h under N_2 . The precipitate was filtered and washed with 1N HCl (100 mL \times 3), H_2O (100 mL \times 3), MeOH (100 mL \times 3), THF (100 mL \times 3) and DCM (100 mL \times 3). The solid was dried under high vacuum to yield MPs as a white solid.

3. Supporting results and experimental raw data

3.1 FT-IR spectra of M-OH and MPs

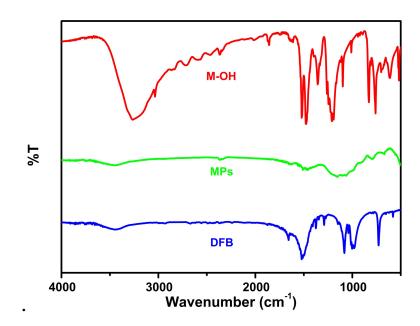
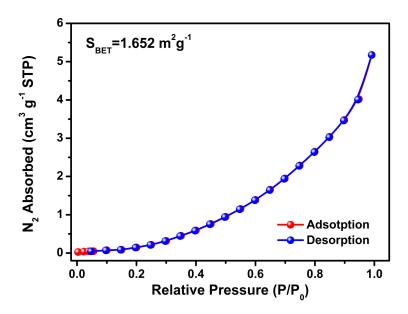
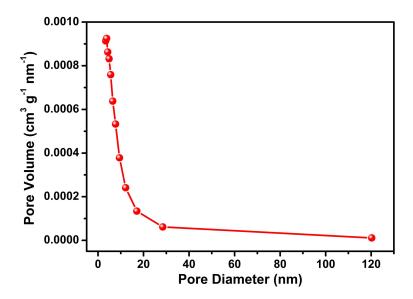
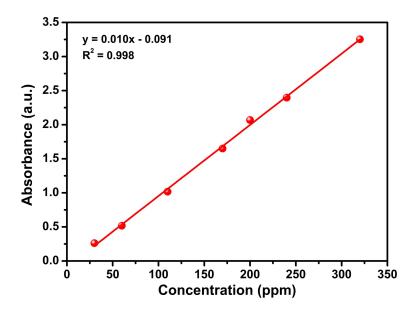




Fig. S1 FT-IR spectra of M-OH, DFB and MPs.

3.2 Gas adsorption and porosity measurements



 $\textbf{Fig. S2} \ N_2 \ adsorption/desorption \ isotherm \ of \ MPs.$

Fig. S3 The cumulative pore volume (pore diameter) measurement of MPs. The result suggests that MPs is nonporous.

3.3 Calibration curve of iodine in aqueous solution for adsorption study

Fig. S4 Calibration curve obtained by the UV/vis absorption peak at 286 nm and used for calculating the I₂/KI_(aq) concentration in the iodine capture study described in the main text.

3.4 Iodine capture speed monitoring in aqueous solution

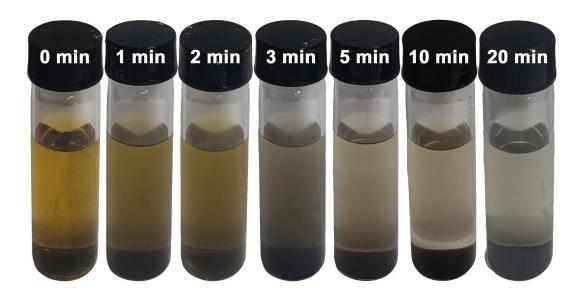


Fig. S5 Color changes of $I_2/KI_{(aq)}$ (250 ppm) upon addition of AC (6 mg).

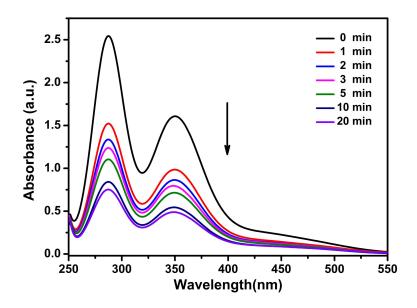


Fig. S6 Time-dependent UV/vis absorption spectra of $I_2/KI_{(aq)}$ (250 ppm) upon addition of AC (6.0 mg).

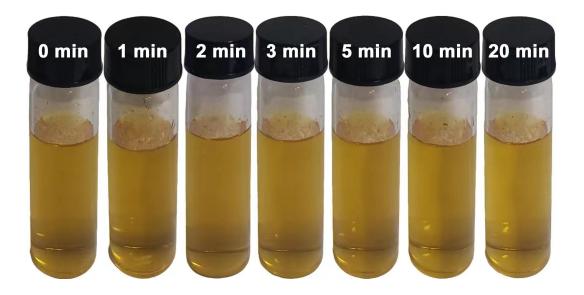


Fig. S7 Color changes of I₂/KI_(aq) (250 ppm) upon addition of MPs (6 mg).

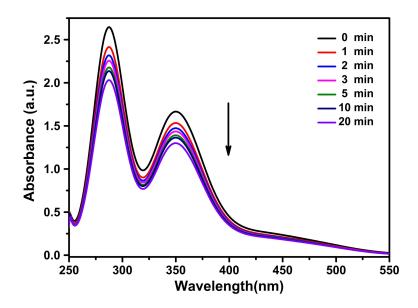
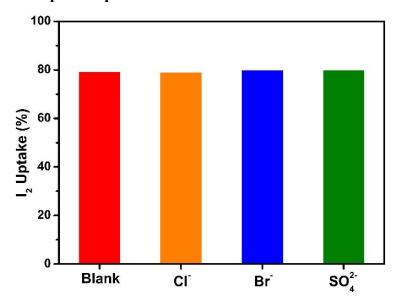
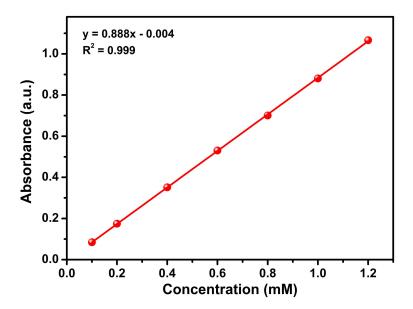



Fig. S8 Time-dependent UV/vis absorption spectra of $I_2/KI_{(aq)}$ (250 ppm) upon addition of MPs (6.0 mg).

3.5 Selective adsorption experiments


Fig. S9 Uptake efficiencies of P-P6APs for saturated iodine aqueous solution (250 ppm) in the presence of competing anions (as their potassium salts).

3.6 Comparison of adsorption capacity

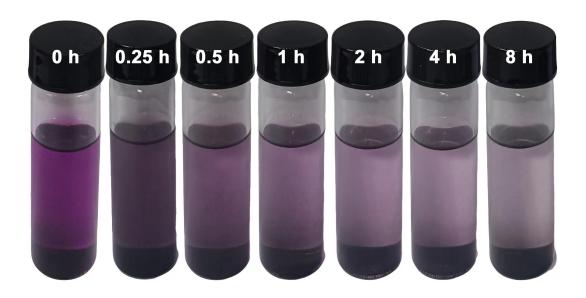
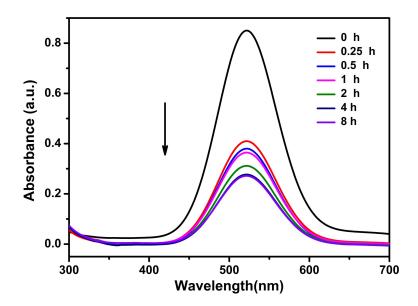
Table S1 Iodine uptake capacities of different macrocycle-based crosslinked polymers from aqueous phase.

Adsorbents	S_{BET}	Conditions	Adsorption	Ref.
	$(m^2 \cdot g^{-1})$	(P: I ₂ , S: adsorbent)	amount (g/g)	
P-P6APs	366.09	P=250 ppm, S=1 mg mL ⁻¹	0.2	Here
C[4]P-TEPM	138.4	P=1.2 mM, S=1 mg mL ⁻¹	0.29	[2]
C[4]P-HEPM	277.6	P=1.2 mM, S=1 mg mL ⁻¹	0.30	[2]
CMP-4	9.5	P=1 mM	/	[3]
C[4]P-BTP	20.5	P=1.2 mM, S=1 mg mL ⁻¹	0.30	[4]
C[4]P-DPP	110.0	P=1.2 mM, S=1 mg mL ⁻¹	0.14	[4]
CaCOP1	10.86	P=100,000 ppm, S=17 mg mL ⁻¹	2.40	[5]
CaCOP2	20.16	P=100,000 ppm, S=17 mg mL ⁻¹	2.81	[5]
CaCOP3	81.09	P=100,000 ppm, S=17 mg mL ⁻¹	3.1	[5]
DTTP5	14.9	P=0.1 mg mL ⁻¹ , S=1 mg mL ⁻¹	0.09	[6]
∆@PPG3	0.0006	P=0.3 mM, S=2 mg mL ⁻¹	0.035	[7]
∆@PPG6	0.0097	P=0.3 mM, S=2 mg mL ⁻¹	0.035	[7]

3.7 Calibration curve of iodine in n-hexane for adsorption study

Fig. S10 Calibration curve obtained by the UV/vis absorption peak at 520 nm and used for calculating the iodine/n-hexane solution concentration in the iodine capture study described in the main text.

3.8 Iodine capture speed monitoring in n-hexane

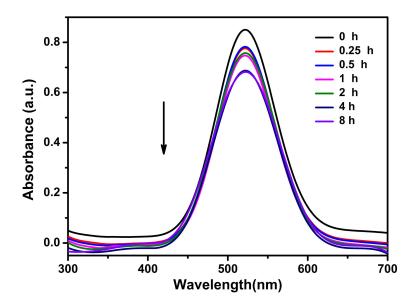

Fig. S11 Color changes of I₂ (1 mM) in n-hexane upon addition of AC (24 mg).

Fig. S12 Time-dependent UV/vis absorption spectra of iodine/n-hexane solution (1 mM) upon addition of AC (24.0 mg).

Fig. S13 Color changes of I_2 (1 mM) in n-hexane upon addition of MPs (24 mg).

Fig. S14 Time-dependent UV/vis absorption spectra of iodine/n-hexane solution (1 mM) upon addition of MPs (24.0 mg).

3.9 PXRD patterns of iodine and I₂@P-P6APs

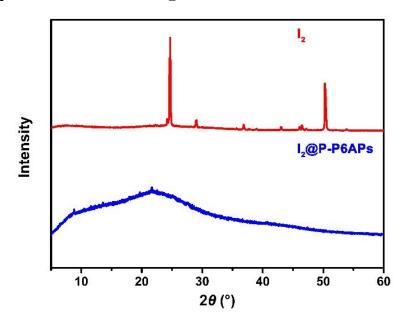


Fig. S15 PXRD patterns of iodine and I₂@P-P6APs.

3.10 FT-IR spectra of P-P6APs and I₂@P-P6APs

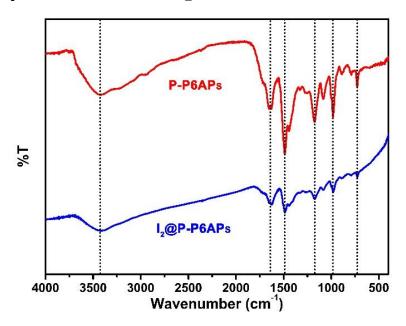


Fig. S16 FT-IR spectra of P-P6APs and $I_2@P\text{-P6APs}$.

3.11 The sixth recycling experiments

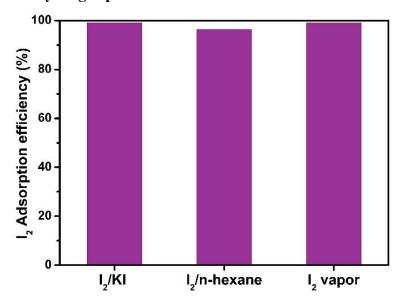


Fig. S17 Iodine adsorption efficiency of P-P6APs after 5 cycles of reuse.

References

- 1. Y. Ma, X. Chi, X. Yan, J. Liu, Y. Yao, W. Chen, F. Huang and J.-L. Hou, per-Hydroxylated Pillar[6]arene: Synthesis, X-ray Crystal Structure, and HostGuest Complexation, *Org. Lett.*, 2012, **14**, 1532-1535.
- 2. Z. Zheng, Q. Lin, L. Xie, X. Chen, H. Zhou, K. Lin, D. Zhang, X. Chi, J. L. Sessler and H. Wang, Macrocycle polymeric networks based on a chair-like calix[4]pyrrole for the rapid and efficient adsorption of iodine from water, *J. Mater. Chem. A*, 2023, **11**, 13399.
- 3. D. Dai, J. Yang, Y.-C. Zou, J.-R. Wu, L.-L. Tan, Y.Wang, B. Li, T. Lu, B. Wang and Y.-W. Yang, Macrocyclic Arenes-BasedConjugated Macrocycle Polymers for Highly Selective CO₂ Capture and Iodine Adsorption, *Angew. Chem. Int. Ed.*, 2021, **60**, 8967-8975.
- 4. L. Xie, Z. Zheng, Q. Lin, H. Zhou, X. Ji, J. L. Sessler and H. Wang, Calix[4]pyrrole-based Crosslinked Polymer Networks for Highly EffectiveIodine Adsorption from Water, *Angew. Chem. Int. Ed.*, 2022, **61**, e202113724.
- 5. D. An, L. Li, Z. Zhang, A. M. Asiri, K. A. Alamry and X. Zhang, Amino-bridged covalent organic Polycalix[4]arenes for ultra efficient adsorption of iodine in water, *Mater. Chem. Phys.*, 2020, **239**, 122328.
- 6. J. Cao, H. Zhu, L. Shangguan, Y. Liu, P. Liu, Q. Li, Y. Wu and F. Huang, A pillar[5]arene-based 3D polymer network for efficient iodine capture in aqueous solution, *Polym. Chem.*, 2021, **12**, 3517.
- 7. B. T. Benkhaled, A. Chaix, C. Gomri, S. Buys, N. Namar, N. Sehoulia, R. Jadhav, J. Richard, L. Lichon, C. Nguyen, M. Gary-Bobo and M. Semsarilar, Novel Biocompatible Trianglamine Networks for Efficient Iodine Capture, *ACS Appl. Mater. Interfaces*, 2023, **15**, 42942-42953.