SUPPLEMENTARY INFORMATION

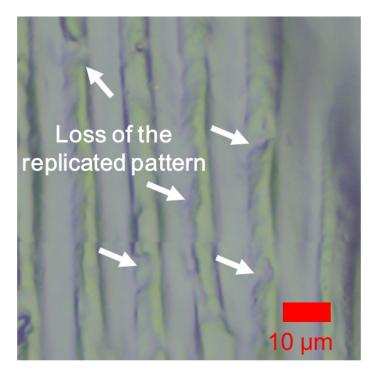
Cost-Effective Fabrication of Submicron-Scale Patterns Enabled by Microcontact Printing with a Pre-Strained Soft Elastomeric Stamp

Eunhwan Jo^a and Jaesam Sim^{b*}

^a Department of Mechanical Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea.

^b Purpose Built Mobility Group, Korea Institute of Industrial Technology, 6 Cheomdangwagi-

ro 208 beon-gil, Buk-gu, Gwangju 61012, Republic of Korea.


*Corresponding author: sjswkd3@kitech.re.kr (JS)

Supplementary Information includes:

Figure S1. An optical image of replicated patterns indicating the loss of the pattern with the adhesive promoter.

Figure S2. A tensile stress versus strain curve of an Ecoflex elastomeric stamp.

Figure S3. Optical microscope images of the PR pattern on the master mold with a periodic line pattern

Figure S1. An optical image of replicated patterns indicating the loss of the pattern with the adhesive promoter.

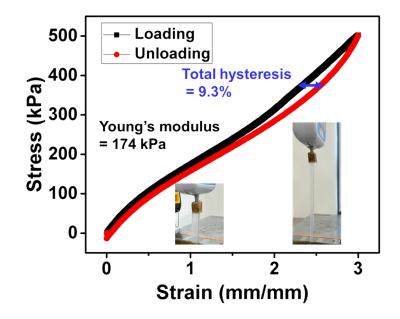
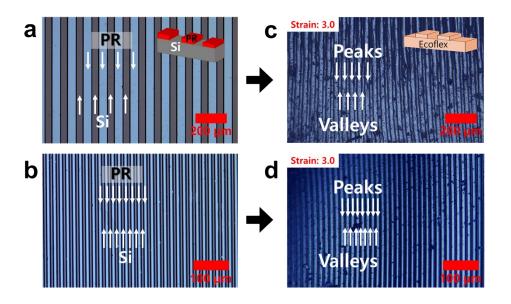



Figure S2. A tensile stress versus strain curve of an Ecoflex elastomeric stamp.

Figure S3. Optical microscope images of the PR pattern on the master mold with a periodic line pattern with width and gap of (a) 50 μ m and (b) 10 μ m, respectively. Optical microscope images of the replicated mold after pre-stretching and subsequent release, showing a reduction of 60% in dimensions of (c) 20- μ m and (d) 4- μ m periodic line pattern, respectively.