Fusion of polymer-coated liposomes with forcespun microfibers as hybrid

materials to enhance sustained release

Ahmed M. Agiba¹, Luis Gerardo Rodríguez Huerta¹, Nicolás A. Ulloa-Castillo², Francisco J. Sierra-Valdez¹, Saeed Beigi-Boroujeni¹, Omar Lozano^{3,4,*}, Alan Aguirre-Soto^{1,*}

¹School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, México
²Center for Innovation in Digital Technologies, School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, México
³Institute for Obesity Research, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, México
⁴School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, México
*<u>omar.lozano@tec.mx</u>
*alan.aguirre@tec.mx

Supplementary Materials and Methods Information

Drug release kinetic models

Zero-order release kinetics

In zero-order release kinetics, the cumulative amount of drug release is directly

proportional to time, as described by the following equation¹:

$$C = \left(K_0 \cdot t\right)_{\cdot}$$

where K_0 is the zero-order rate constant expressed as concentration per time and *t* is the time per hour.

First-order release kinetics

It is expressed as the log cumulative percentage of drug undissolved versus time, as described by the following equation²:

$$Log C = (Log C_0 - K_t/2.303)$$

where *C* is the amount of drug undissolved at time, C_0 is the drug concentration at *t* equal to 0, and K_t is the corresponding release rate constant.

Higuchi square root release model

It is expressed as the cumulative percentage of drug release versus the square root of time, as described by the following equation³:

$$Q = \left(K_H \cdot t^{\frac{1}{2}}\right),$$

where Q is the amount of drug dissolved at time, K_H is the Higuchi constant.

Hixson-Crowell cube root release model

It is expressed as the cube root of the initial concentration minus the cube root of the percentage of drug undissolved versus time, as described by the following equation⁴:

$$\left(Q_0^{\frac{1}{3}} - Q_t^{\frac{1}{3}} = K_{HC} \cdot t\right),$$

where Q_0 is the initial amount of the drug, Q_t is the amount of drug release at time, and K_{HC} is the rate constant for the Hixson-Crowell cube root model.

Korsmeyer-Peppas equation

It is a simple semi-empirical model that relates drug release to elapsed time exponentially, as described by the following equation⁵:

$$Q/Q_0 = Kt^n$$

where Q/Q_0 is the fraction of drug released at time, *K* is the constant comprising the structural geometric characteristics, and *n* is the diffusion exponent that depends on the release mechanism.

Supplementary Figures

Fig. S1 A photograph of quercetin liposomal dispersion.

Fig. S2 Calibration curve of quercetin.

Fig. S3 shows (a) the EE% and LC% of LP-QR-CTAB-CH and LP-QR-CTAB-PEG liposomes; and (b) the *in vitro* drug release profiles of LP-QR-CTAB-CH and LP-QR-CTAB-PEG liposomes.

Fig. S4 Chemical structure of quercetin (a), the FT-IR spectra of quercetin (b), chitosan (c), and PEG-4000 (d); LP-CTAB, LP-QR-CTAB-CH, and LP-QR-CTAB-PEG (e); and PCL, PCL-NF, LP-QR-CTAB-CH-NF, and LP-QR-CTABPEG-NF (f).

ig. S5 TGA and weight derivative curves of PCL-NF (a,b); LP-QR-CTAB-CH-NF (c,d); and

LP-QR-CTAB-PEG-NF (e,f).

Fig. S6 Drug release kinetic models of LP-QR-CTAB-CH liposome. (a) Zero-order release, (b)

first-order release, (c) Higuchi release, and (d) Hixon-Crowell release.

Fig. S7 Drug release kinetic models of LP-QR-CTAB-PEG liposome. (a) Zero-order release, (b) first-order release, (c) Higuchi release, and (d) Hixon-Crowell release.

Supplementary Tables

Table S1. Liposome and forcespun nanofiber formulations and their compositions (mg/mL).

Formula	Formula Composition								
Code	Quercetin	Phospholipid	Cholesterol	СТАВ	Coating	Nanofiber			
	(mg)	(mg)	(mg)	(mg)	Polymer	Polymer			
					(mg)	(mg)			
		Surface-Coated Liposomes							
LP-QR-CTAB-	10	38	19	5.7	Chitosan,				
СН					0.5				
LP-QR-CTAB-	10	38	19	5.7	PEG,				
PEG					40				
	Nanofiber-Loaded Surface-Coated Liposomes								
LP-QR-CTAB-	10	38	19	5.7	Chitosan,	PCL,			
CH-NF					0.5	200			
LP-QR-CTAB-	10	38	19	5.7	PEG,	PCL,			
PEG-NF					40	200			

Standard: 0.1 gm of quercetin in 100 mL of methanol							
Dilution (mL/25mL)	DF	Conc (mg/mL)	Absorbance				
0.2	125	0.08	0.640524268				
0.4	62.5	0.16	1.142894506				
0.6	41.7	0.24	1.685053229				
0.8	31.3	0.32	2.33641839				
1	25	0.4	2.783970118				
Slope	6.85						
Intercept	0.07						
R ²	0.9973	0.9973					
Regression equation	y = 6.8	5x + 0.07					

Table S2. Preparation of quercetin calibration standards.

Formula Code	PS	PDI	Zeta	Viscosity	EE	LC	Cumulative	
	(nm)		Potential	(cP)	(%)	(%)	% Drug	
			(mV)				Release (%,	
							48 hours)	
			Initial					
I P OR CTAR CH	552.62	0.48 <u>+</u>	30.18 ± 1.36	11.94 <u>+</u>	96.82 <u>+</u>	9.381 <u>+</u>	59 96 + 5 74	
LI-QK-CIAD-CII	± 25.12	0.06	50.18 <u>-</u> 1.50	3.79	0.007	0.01	<u> </u>	
I P.O.P.CTAB-PEC	469.08	0.55 <u>+</u>	14.57 ± 0.05	12.79 <u>+</u>	96.39 <u>+</u>	8.794 <u>+</u>	99.84 <u>+</u> 4.98	
	<u>+</u> 48.75	0.06	14.37 <u>-</u> 0.95	6.79	0.002	0.003		
			3 Months of s	torage				
LP-OR-CTAR-CH	622.20	0.52 <u>+</u>	26.45 ± 1.88	11.87 <u>+</u>				
ы-ок-став-сп	± 9.49 0.12 20.43 ± 1.88	2.24						
	613.78	0.50 +		12 34 +				
LP-QR-CTAB-PEG	<u>+</u>	0.30 -	10.08 ± 0.83	5.81				
	122.98	0.70		5.01				

Table S3. Physicochemical characteristics of the coated liposomes at initial and after 3months of storage.

Polymer	Polymer	Co-polymer	Co-polymer	Polymer to co-	Solvent	Co-solvent	Fiber yield and
name	Concentration	name	Concentration	polymer ratio	name	name	quality
	(%)		(%)	(v/v)			
	10				Purified water		No fiber
lic)	10				DMSO		No fiber
lihq	10	Chitosan	1	50:50	Purified water	TFA	No fiber
ydro	15				Purified water		No fiber
A (h	15				DMSO		No fiber
PV	20				Purified water		No fiber
	20				DMSO		No fiber
	10				THF	DMF	Low yield
	10				Chloroform	Methanol	Low yield
	15				THF	DMF	Low yield
lobic	15				Chloroform	Methanol	Moderate yield
roph	15	Chitosan	1	50:50	TFA		No fiber
hydi	17.5				THF	DMF	Low yield
CT (17.5				Chloroform	Methanol	Moderate yield
Ā	20				THF	DMF	Low yield
	20				Chloroform	Methanol	High yield
	20	Chitosan	1	50:50	TFA		No fiber

 Table S4. Formulation and optimization of forcespun microfibers.

Table S5. Linear fit and coefficient of determination (R²) of the LP-QR-CTAB-CH

Formula	Zero-ord	er	First-ord	er	Higuchi	square	Hixon-Cı	owell	Korsmey	er-
code	release kinetics		release kinetics release model		release model		Peppas model			
	Linear	R ²	Linear	R ²	Linear	R ²	Linear	R ²	Linear	R ²
	fit		fit		fit		fit		fit	
LP-QR-	y =	0.9546	y = -	-	y =	0.9680	y = -	-	y =	0.930
СТАВ-	1.08x +		0.01x +	0.9631	8.27x –		0.02x +	0.9611	0.73x +	
СН	6.28		1.98		3.23		4.55		0.56	
LP-QR-	y =	0.9857	y = -	-	y =	0.9835	y = -	-	y =	0.981
СТАВ-	2.30x +		0.03x +	0.9367	15.30x –		0.08x +	0.9499	0.83x +	
PEG	0.43		2.10		12.80		4.80		0.60	

and LP-QR-CTAB-PEG liposomes in different kinetic models.

Table S6. Drug release rate parameters of the Korsmeyer-Peppas kinetic model for

LP-QR-CTAB-CH	and LP-	QR-CTAB	-PEG liposomes.
---------------	---------	----------------	-----------------

Formula code	Linear fit	R ²	K	SSD	n		
LP-QR-CTAB-CH	y = 0.73x + 0.56	0.930	5.587	233.044	0.585		
LP-QR-CTAB-PEG	y = 0.83x + 0.60	0.981	4.465	105.248	0.802		
Coefficient of determination (R ²); rate constant (K); sum of the squared difference (SSD); release exponent (<i>n</i>).							
$n \le 0.45$: Fickian diffusion (Case-I transport); $0.45 < n < 0.89$: anomalous (non-Fickian) diffusion; $n \ge 0.89$: zero-order release (Case-							
II transport); <i>n</i> > 0.89: super Case-II transport.							

References

1 Jain, A.; Jain, S.K. In vitro release kinetics model fitting of liposomes: An insight. *Chem. Phys. Lipids* 2016, **201**, 28–40.

2 Hwang, K.J.; Luk, K.F.; Beaumier, P.L. Hepatic uptake and degradation of unilamellar sphingomyelin/cholesterol liposomes: a kinetic study. *PNAS* 1980, **77**, 4030–4034.

3 Higuchi, T. Rate of release of medicaments from ointment bases containing drugs in suspension. *J. Pharm. Sci.* 1961, **50**, 874–875.

4 Hixon, A.W.; Crowell, J.H. Dependence of reaction velocity upon surface and agitation. *Ind. Eng. Chem.* 1931, **23**, 923–931.

5 Korsmeyers, R.W.; Gumy, R.; Doelker, E.M.; Buri, P.; Peppas, N.A. Mechanism of solute release from porous hydrophilic polymers. *Int. J. Pharm.* 1983, **15**, 25–35.