Supporting Information

Cuprous iodide implanted in hot-water-soluble-starch coating of ferrite nanoparticles: efficient catalysts for on-water click synthesis of 1,2,3-triazoles

Seyyed Mohammad Rezapour Mousavi,^a and Kurosh Rad-Moghadam ^{a,b*}

^a Department of Organic Chemistry, University of Guilan, University campus 2, Rasht, Iran. ^b Faculty of chemistry, University of Guilan, Rasht 4193833697, Iran. E-mail: radmm@guilan.ac.ir

Table of contents

S1. The EDS spectrum of CuI@HWSS@CF

S2. The EDS spectrum and the elemental map of CuI@HWSS@FF

S₃. The FT-IR spectrum of HWSS and CuI

S₄. The ¹H NMR spectrum of 1-benzyl-4-phenyl-1*H*-1,2,3-triazole

S₅ The ¹H NMR spectrum of 1-(4-bromobenzyl)-4-phenyl-1*H*-1,2,3-triazole

S₆. The ¹H NMR spectrum of 1-(4-methylbenzyl)-4-phenyl-1*H*-1,2,3-triazole

S_{7.} The ¹H NMR spectrum of 1-(2,3-dichlorobenzyl)-4-phenyl-1*H*-1,2,3-triazole

S_{8.} The ¹H NMR spectrum of 1-(4-chlorobenzyl)-4-phenyl-1*H*-1,2,3-triazole

S₉. The ¹H NMR spectrum of1-(3,4-dichlorobenzyl)-4-phenyl-1*H*-1,2,3-triazole

S₁₀. The ¹H NMR spectrum of 1-(2-chlorobenzyl)-4-phenyl-1*H*-1,2,3-triazole

S₁₁. The ¹H NMR spectrum of 1-(3-chlorobenzyl)-4-phenyl-1*H*-1,2,3-triazole

S₁₂. The ¹³C NMR spectrum of 1-benzyl-4-phenyl-1*H*-1,2,3-triazole

S₁₃. The ¹³C NMR spectrum of 1-(4-bromobenzyl)-4-phenyl-1*H*-1,2,3-triazole

S₁₄. The ¹³C NMR spectrum of 1-(3-chlorobenzyl)-4-phenyl-1*H*-1,2,3-triazole

S₁₅. The ¹³C NMR spectrum of 1-(4-chlorobenzyl)-4-phenyl-1*H*-1,2,3-triazole

$S_{l}.$ The EDS spectrum of CuI@HWSS@CF

Quantitative Results

Elt	Line	Int	Error	K	Kr	W%	A%	ZAF	Formula	Ox%	Pk/Bg	Class	LConf	HConf	Cat#
С	Ка	6.1	12.2346	0.0266	0.0202	6.61	14.74	0.3051		0.00	19.16	A	5.64	7.59	0.00
о	Ка	129.7	12.2346	0.2837	0.2150	34.68	58.02	0.6199		0.00	26.21	А	33.57	35.79	0.00
CI	Ка	1.8	0.4142	0.0020	0.0015	0.18	0.13	0.8681		0.00	2.19	В	0.13	0.22	0.00
Fe	Ка	135.0	0.6706	0.5131	0.3889	43.15	20.68	0.9012		0.00	26.51	А	41.80	44.50	0.00
Со	Ка	25.3	0.6706	0.1189	0.0901	10.24	4.65	0.8800		0.00	8.07	А	9.50	10.98	0.00
Cu	Ка	4.7	0.6706	0.0365	0.0277	3.34	1.40	0.8296		0.00	3.18	В	2.78	3.89	0.00
Т	La	4.7	0.3816	0.0191	0.0145	1.81	0.38	0.8028		0.00	2.54	В	1.50	2.11	0.00
				1.0000	0.7578	100.00	100.00			0.00					0.00

$S_2.$ The EDS spectrum and the elemental map of CuI@HWSS@FF $% S_2$

Map Sum Spectrum				
Element	Line Type	Weight %	Weight % Sigma	Atomic %
С	K series	29.59	0.94	45.55
0	K series	38.64	0.70	44.65
Fe	K series	25.73	0.42	8.52
Cu	K series	2.76	0.13	0.80
1	L series	3.27	0.13	0.48
Total		100.00		100.00

EDS Layered Image 1

$S_{\rm 3}.$ The FT-IR spectrum of HWSS and CuI

S₄. The ¹H NMR spectrum of 1-benzyl-4-phenyl-1*H*-1,2,3-triazole

 S_5 The ¹H NMR spectrum of 1-(4-bromobenzyl)-4-phenyl-1*H*-1,2,3-triazole

S₆. The ¹H NMR spectrum of 1-(4-methylbenzyl)-4-phenyl-1*H*-1,2,3-triazole

 $S_{7.}$ The ¹H NMR spectrum of 1-(2,3-dichlorobenzyl)-4-phenyl-1*H*-1,2,3-triazole

¹H NMR (250 MHz, DMSO- d_6): $\delta = 8.62$ (s, 1H), 7.84 (d, J 7.2 Hz, 2H, 2',6'-H), 7.65 (d, J 7.9 Hz, 1H, 4"-H), 7.41-7.30 (m,4H), 7.20 (d, J 7.4 Hz, 1H, 6"-H), 5.79 (s, 2H, CH₂).

 $S_{8.}$ The ¹H NMR spectrum of 1-(4-chlorobenzyl)-4-phenyl-1*H*-1,2,3-triazole

S₉. The ¹H NMR spectrum of 1-(3,4-dichlorobenzyl)-4-phenyl-1H-1,2,3-triazole

¹H NMR (250 MHz, DMSO- d_6): δ 8.65 (s, 1H, 5-H), 7.83 (d, J 7.4 Hz, 2H, 2',6'-H), 7.66 (s, 1H, 2"-H), 7.65 (d, J 8.7 Hz, 1H, 5"-H), 7.42 (t, J 7.4 Hz, 2H, 3',5'-H), 7.33-7.30 (m, 2H, 4'-H and 6"-H), 5.66 (s, 2H).

 S_{10} . The ¹H NMR spectrum of 1-(2-chlorobenzyl)-4-phenyl-1*H*-1,2,3-triazole

S₁₁. The ¹H NMR spectrum of 1-(3-chlorobenzyl)-4-phenyl-1*H*-1,2,3-triazole

¹³C NMR (62.5 MHz, DMSO-d₆): δ = 147.11, 136.45, 131.12, 129.30, 128.59, 128.32, 125.60, 121.98, 53.47.

S₁₃. The ¹³C NMR spectrum of 1-(4-bromobenzyl)-4-phenyl-1*H*-1,2,3-triazole

¹³C NMR (62.5 MHz, DMSO-*d*₆): δ 147.2, 135.8, 132.2, 131.0, 130.6, 129.3, 128.4, 125.6, 122.0, 52.7.

128.6, 128.4, 127.1, 125.6, 122.1, 52.7.

¹³C NMR (62.5 MHz, DMSO-*d*₆): δ 159.8, 147.6, 130.8, 130.5, 129.4. 128.6, 125.8, 122.1, 120.0, 115.4, 56.0.

