Supplementary Document

Construction of MXene/MIL Fe-53/ZIF-67 derived bifunctional electrocatalyst for efficient overall water splitting

Komal Farooq^a, Maida Murtaza^a, Laraib Kiran^a, Kashf Farooq^b Waqas Ali Shah^{a*} Amir Waseem^{a*}

^a Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan.

^b Department of Chemistry, University of Poonch, Rawalakot, Azad Kashmir, Pakistan

Materials

*MAX phase (Ti*₃*AlC*₂), acquired from Nanoshel, UK. Hydrofluoric acid (HF), Dimethyl formamide (DMF), ferric chloride hexahydrate (FeCl₃.6H₂O), 2-aminoterephthalic acid (NH₂-BDC), cobalt(II) nitrate hexahydrate (Co(NO₃).6H₂O), 2-methyl imidazole ($C_4H_6N_2$) and methanol were purchased from Macklin chemicals, China. RuO₂ (99.9 %) and Nafion solution (5 % wt.) were purchased from Sigma-Aldrich.

Characterizations

X-ray diffraction (XRD) patterns were obtained using a Bruker D8 Advance diffractometer, employing Cu-K α radiation at a scan rate of 5°/min and a step size of 0.02°. The morphological analysis was conducted via field emission scanning electron microscopy (FE-SEM) on a Philips XL-30, equipped with energy-dispersive X-ray spectroscopy (EDX). Measurements were performed in high vacuum mode with an acceleration voltage of 20 kV. To minimize charging effects, samples were gold-coated prior to analysis. Transmission electron microscopy (TEM) images were acquired using a JOEL 2100 microscope. Samples were prepared by sonication in 100% ethanol for 10 minutes and then deposited on holey carbon grids. X-ray photoelectron spectroscopy (XPS) measurements were carried out on a Kratos Axis Ultra system, utilizing a monochromatic Al K α X-ray source with an emission current of 10 mA and an anode potential of 15 kV.

Electrochemical evaluations

Electrochemical workstation, CHI 660E, containing three-electrode system was employed to perform the electrocatalytic measurements. The system was coupled with a rotating

disk electrode (RDE). In the three-electrode system, the catalyst modified glassy carbon electrode (GCE) as working electrode, Platinum wire as counter electrode and Hg/HgO as used as reference electrode. The catalyst ink was prepared by sonicating 1 mg of testing catalyst with 80 µL isopropanol, 10 µL water/ethanol solution and 10 µL of 5% Nafion solution. Later, 5 µL of the prepared slurry was drop casted on the freshly polished GCE and dried at room temperature. For the oxygen evolution measurement, all linear sweep voltammetry (LSV) were recorded in O₂ saturated 1 M KOH electrolyte with a scan rate of 5 mVs⁻¹ while for HER, 0.5 M H₂SO₄ electrolyte, without purged oxygen, was used. The Nernst formula was used to convert all the potential values to reversible hydrogen electrode (RHE): $E_{RHE} = E_{Hg/HgO} + 0.059$ pH + 0.098. Electrochemical impedance spectroscopy (EIS) was conducted at 1 V vs. RHE over 0.1 Hz to 100 kHz to estimate the charge transfer resistance. Cyclic voltammetry (CV) cycles in a non-faradaic potential range at scan rates of 10-100 mV s⁻¹ were used to determine the electrical double-layer capacitance (C_{dl}) by linearly fitting the plot of current density versus scan rate.

Mass activity, Turn over frequency calculations

Mass activity

The catalytic performance of our desired catalyst was also checked through mass activity which was calculated by using following equation [1, 2]

Mass activity = j/m,

where j is the measured current density at decided overpotential i.e 250 mV and m is the catalyst loaded on glassy carbon electrode (0.28 mgcm⁻²).

Turn over frequency (TOF)

TOF is defined as the number of reaction products generated per active site per unit time. TOF can be calculated from equation as given below [1, 2].

$$TOf = \frac{j.A}{4.F.m}$$

Where,

j = current density at a given overpotential (e.g., $\eta = 250 \text{ mV}$)

 A_{geo} = geometric surface area of electrode (eg, 0.071 cm²)

value 4 represent the transfer of 4 electrons per mole of O2 (for OER)/ the transfer of 2 electrons

per mole of H2 (for HER)

F= Faraday's constant (96485 C/mol)

m is the moles of metal atoms present OR number of active sites.

Scheme S1 synthesis scheme for MXene preparation from MAX phase.

Scheme S2 Synthesis scheme for MILFe53/MXene hybrid preparation

Figure S1. XRD pattern of MAX (Ti_3AlC_2) and MXene $(Ti_3C_2T_x)$.

Figure S2. EDX element analysis of (a) Mil-53 (Fe), (b) MILMX, (c) MXMILZIF, (d) M1, (e) M2 and (f) M3.

Figure S3. Non-faradic region cyclic voltammogram at various scanning rates of (a) M1, (b) M2 and (c) M3.

Figure S4. Chronoamperometric test for OER in 1 M KOH electrolyte

Table S1 $\mathrm{C}_{dl},$ ECSA and R_{f} values of samples

Electrocatalys	C _{dl}	ECSA	R _f *
t	(mFcm ⁻²)	(cm ²)	
M1	0.33	16.5	235.7
M2	0.61	30.5	435.7
M3	1.15	57.5	821.4

 Table S2 OER activities for various catalysts.

Name of the catalyst	Abbreviated name for catalyst	Overpotential (mV) at 10 mA/cm ²	Tafel value (mV/dec)	Mass activity @η=250 mV (A/g)	TOF @η=250 mV (sec ⁻¹)
MXene/MIL Fe-53/ZIF- 67@50	M1	299	121	13.9	0.38
MXene/MIL Fe-53/ZIF- 67@100	M2	271	73	21.1	0.57
MXene/MIL Fe-53/ZIF- 67@200	M3	237	64	57.5	1.56

 Table S3 HER activities for various catalysts.

Name of the catalyst	Abbreviated name for	HER overpotential	Tafel value (mV/dec)	Mass activity @η=350 mV	TOF @η=350 mV
-	catalyst	(mV) at 10		(A/g)	(sec ⁻¹)
		mA/cm ²			
MXene/MIL	M1	494	244	6.4	0.35
Fe-53/ZIF-					
67@50					
MXene/MIL	M2	369	205	20	1.10
Fe-53/ZIF-					
67@100					
MXene/MIL	M3	307	185	54.6	2.97
Fe-53/ZIF-					
67@200					

Catalyst	OER Overpotential at 10 mA/cm ²	HER Overpotential at 10 mA/cm ²	Ref.
Co-M-Fe/Ni(150)	269 mV	149 mV	[3]
CoP/NCNHP	1.64 V		[4]
		140 mV	
Co0.2Fe0.8Ni-OCNF	291 mV	259 mV	[5]
Co/NiMOFs@Fe	264 mV		[6]

Table S4 Comparison of OER and HER overpotentials from reported literature

References

- 1. Gao, M.; Sheng, W.; Zhuang, Z.; Fang, Q.; Gu, S.; Jiang, J.Yan, Y. Efficient Water Oxidation Using Nanostructured A-Nickel-Hydroxide as an Electrocatalyst. *Journal of the American Chemical Society*. **2014**, 136,19, 7077-7084.
- 2. Huang, J.; Chen, J.; Yao, T.; He, J.; Jiang, S.; Sun, Z.; Liu, Q.; Cheng, W.; Hu, F.; Jiang, Y.; Pan, Z.Wei, S. Coooh Nanosheets with High Mass Activity for Water Oxidation. *Angewandte Chemie International Edition*. **2015**, 54,30, 8722-8727.
- 3. Chen, P.; Duan, X.; Li, G.; Qiu, X.; Wang, S.; Huang, Y.; Stavitskaya, A.Jiang, H. Construction of Zif-67/Mil-88 (Fe, Ni) Catalysts as a Novel Platform for Efficient Overall Water Splitting. *International Journal of Hydrogen Energy*. **2023**, 48,20, 7170-7180.
- 4. Pan, Y.; Sun, K.; Liu, S.; Cao, X.; Wu, K.; Cheong, W.-C.; Chen, Z.; Wang, Y.; Li, Y.Liu, Y. Core–Shell Zif-8@ Zif-67-Derived Cop Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. *Journal of the American Chemical Society*. **2018**, 140,7, 2610-2618.
- 5. Li, Y.; Lu, M.; Wu, Y.; Xu, H.; Gao, J.Yao, J. Trimetallic Metal–Organic Framework Derived Carbon-Based Nanoflower Electrocatalysts for Efficient Overall Water Splitting. *Advanced Materials Interfaces.* **2019**, 6,12, 1900290.
- 6. Luo, P.; Li, S.; Zhao, Y.; Ye, G.; Wei, C.; Hu, Y.Wei, C. In-Situ Growth of a Bimetallic Cobalt-Nickel Organic Framework on Iron Foam: Achieving the Electron Modification on a Robust Self-Supported Oxygen Evolution Electrode. *ChemCatChem.* **2019**, 11,24, 6061-6069.