Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is © The Royal Society of Chemistry 2024

Colloidal TiO₂ Nanocrystals with Engineered Defectivity and Optical Properties

Julia J. Chang¹, Bin Yuan², Sandro Mignuzzi³, Riccardo Sapienza³, Francesco Mezzadri⁴ Ludovico Cademartiri^{4*}

1 Department of Materials Science & Engineering, Iowa State University of Science and Technology, 2220 Hoover

Hall, Ames, IA, 50011

2 Department of Chemical & Biological Engineering, Iowa State University of Science and Technology, Gilman

Hall, Ames, IA, 50011

3 The Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, UK

4 Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43124,

Italy

Author to whom correspondence should be addressed: ludovico.cademartiri@unipr.it

Supporting Information

Materials and Methods

Colloidal nanoparticle synthesis: Colloidal titanium dioxide nanoparticles synthesis was performed with Schlenk line under Argon atmosphere. 25g triocylphosphine oxide (TOPO, 90%, Strem Chemical, Inc.) was heated to 120 °C and degassed for 30 minutes. 1.0 mL titanium (IV) isopropoxide (TTIP, 97%, Sigma-Aldrich) and 0.3 mL titanium (IV) chloride (TiCl₄, 99.9%, Sigma-Aldrich) were injected into TOPO. The solution was heated to reacting temperatures and kept there for 2 hours. After the reaction was done, the reaction product was cooled to 80 °C and 25 mL hexane was added into the solution before purification.

Purification: Acetone was added to diluted reaction product at the ratio of 1:1, then centrifugation was performed to centrifuge out the precipitated nanoparticles. After centrifugation, supernatant was discarded, and the precipitate was re-dispersed into hexane. This purifying cycle was repeated for 3 times and the final dispersion was centrifuged at 4000rpm for 10min and filtered through 0.2µm nylon filter.

Sample preparation: The TiO₂ nanoparticle colloidal solution after purification was used as solution sample directly for TEM, PL, photography (10 mg/mL) and UV-vis spectroscopy (0.1 mg/mL). Powder sample was obtained by air-drying colloidal solutions and finely grinded before used for photography, XRD and EPR characterization. TiO₂ thin film samples were prepared by spin-coating TiO₂ nanoparticle colloidal solution onto glass substrate.

Plasma processing: Oxygen and Helium plasma processing of TiO_2 film sample were done by using Harrick plasma cleaner with operating power of 30 Watt and chamber pressure of 500 mTorr. The processing time is 48 hours.

X-ray Powder Diffraction (XRD): XRD spectra were collected of TiO_2 powder samples by using Siemens D500 x-ray diffractometer. X-ray was created by copper X-ray tube with a wavelength of 1.54 A.

Transmission Electron Microscopy (TEM): TEM images were obtained with 2007 JEOL 2100 200kV STEM in TEM mode, operating at 200 kV. Samples for the TEM characterization were made by casting a thin layer of a dilute nanoparticle dispersion on a 200 mesh copper grid coated with a carbon film.

Ultraviolet-visible spectroscopy (UV-vis): UV-vis spectra was collected by using Agilent 8453 UV-Vis instrument in the wavelength range of 190-1100 nm.

Electron Paramagnetic Resonance (EPR): EPR characterization was performed with ELEXSYS E580 FT-EPR instrument with ER 4122 SHQE Resonator at room temperature. Applied frequency is 9.5 GHz as continuous wave in X band, and the characterizing field sweep was from 3160 to 3560 G.

Photoluminescence spectroscopy (PL): Samples were optically pumped at room-temperature with a $\lambda = 440$ nm CW laser (PicoQuant LDH-D-C-440). The emission was spectrally analysed using a grating spectrometer (Princeton Instruments Isoplane-320) equipped with a 800 gr mm⁻¹ holographic grating (0.05 nm resolution) and CCD camera (Princeton Instruments Pixis 400).

Supporting Discussion

Crystalline size calculation¹

p is defined as true crystallite size with following equation:

$p \equiv cube root of the crystalline volume$	(1)
When TiO_2 nanoparticles are assumed as fully crystalline:	

$$p_{TEM} = cube\ root\ of\ octahedron = \sqrt[3]{\frac{\sqrt{2}}{3}}a^3 \approx 0.7783a$$

Where a is the side length of octahedron nanoparticles measured from the TEM images.

For XRD spectrum, the true (3) crystalline size is defined as

the following:
$$\varepsilon = \frac{\lambda}{b \cos \theta}$$

 $p_{XRD} = K\varepsilon$
(4)

Where:

ε: apparent crystallite size λ: wavelength of radiation b: broadening in radian ϑ : Bragg angle K: Scherrer constant. For calculating **ε**, λ was 1.54 Angstrom. b was considered for (101) diffraction peak. 2**θ** equals to 25.281° for (101) diffraction peak. For octahedron crystal shape, Scherrer constant of (101) plane is 0.8613. Taking in all the parameters and we get $p_{XRD} = \frac{7.7885}{w} nm$

(5)

(2)

Where w is the (101) peak full width of half maximum from Gaussian fitting in degrees after background subtraction. (Figure 1, SI)

The results of true crystallite size p obtained from TEM images and XRD spectrum are plotted in Figure 2, SI.

Tauc $plot^2$

Transition type of TiO_2 bandgap was determined by taking the 2^{nd} derivative of TiO_2 solution UVvis absorption spectrum. The intercept point of the 2^{nd} derivative with 0 line represents for the most linear relation between $\alpha \cdot h\nu^{1/2}$ and $h\nu$. Data points lie in the range of (intercept-0.1, intercept+0.1) were fitted into linear functions for each sample. The intercept of the fitted line with x axis is the corresponding bandgap energy.

Supporting Figures

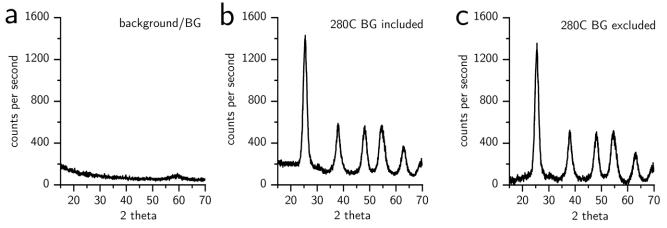
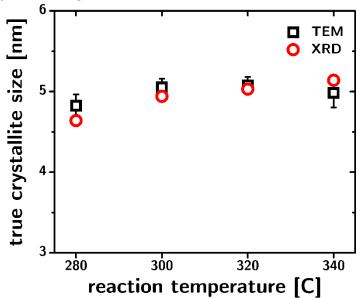



Figure S1. XRD spectrum background subtraction example of TiO_2 powder samples synthesized at 280°C. (a) Background signal from sample holder, (b) Before and (c) after background subtracted.

Figure S2. True crystallite size calculated from TEM images and XRD spectrum.

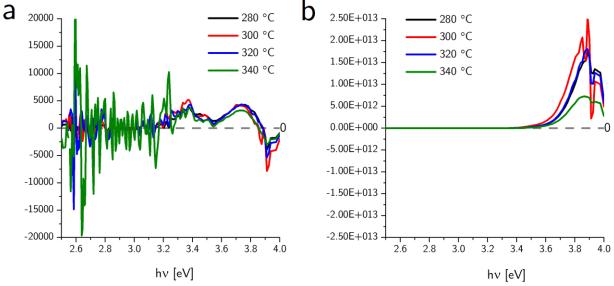


Figure S3. Determination of transition gap type by applying 2nd derivative operation to TiO₂ nanoparticle solution sample UV-vis absorption spectrum. (a) $(\alpha \cdot h\nu)^{\frac{1}{2}}$ versus hv and (b) $(\alpha \cdot h\nu)^2$ versus hv.

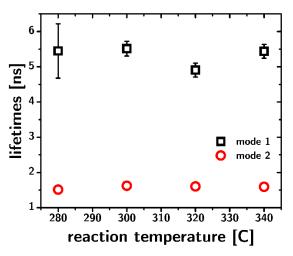


Figure S4. Photoluminescence lifetime of TiO_2 solution samples synthesized at different temperatures by using mode 1 and 2.

References

- 1. J. I. Langford and A. Wilson, *Journal of applied crystallography*, 1978, **11**, 102-113.
- N. Serpone, D. Lawless and R. Khairutdinov, The journal of Physical Chemistry, 1995, 99, 16646-16654.