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Scheme S1. Synthesis procedure for single-atom Co-NAC with aligned pore structure using 
mesoporous silica template.  
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Table S1. ICP-MS characterizations of Co loading on different Co-NAC catalysts. 

Catalyst Co loading  

Co-100-NAC-600 1.2 wt.% 

Co-100-NAC-700 1.7 wt.% 

Co-100-NAC-800 1.9 wt.% 

Co-50-NAC-800 1.1 wt.% 

Co-25-NAC-800 0.6 wt.% 
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Figure S1. PXRD patterns of Co-NAC catalysts prepared under different conditions.  
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Table S2. N2-sorption characterization of NAC catalysts. 

Sample Surface areaa 
(m2 g−1) 

Average pore 
diameterb (nm) 

Pore volume 
(cm3 g−1) 

Co-100-NAC-600 570 3.6  0.48 

Co-100-NAC-700 770 3.7 0.73 

Co-100-NAC-800 1256 3.7 1.12 

Co-50-NAC-800 689 3.8 0.68 

Co-25-NAC-800 727 3.8 0.70 

NAC-800 696 3.5 0.61 

a BET surface area. 
b BJH average pore diameter obtained from the desorption branch. 
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Figure S2. STEM and EDS mapping images of the as-synthesized Co-100-NAC-800. (a,b) 
STEM images showing order pore structure; (c) EDS mapping images showing the uniform 
distribution of Co, N, and C. 
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Figure S3. SEM images of synthesized Co-100-NAC-800 at different magnifications.  
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Figure S4. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-
FTIR) spectrum of synthesized Co-100-NAC-800.  
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Figure S5. XANES and EXAFS spectra of single-atom Co catalyst. (a) Energy space of Co K-
edge of single-atom Co catalysts carbonized under Ar at different temperatures ranging from 
600 to 800 °C; (b) R-space of Co K-edge of single-atom Co catalysts. The XAS data of Co-
NAC-800 had been published in our previous work and added here for comparison purposes.1  
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Figure S6. EXAFS spectra of (a) Co-100-NAC-800; (b) Co-100-NAC-700; (c) Co-100-NAC-
600. The data of Co-NAC-800 had been published in our previous work and added here for 
comparison purposes.1 
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Table S3. EXAFS fitting parameters for Co catalysts (k-range = 2.5 to 8.5 Å-1) 

Sample Shell CNa R (Å)b σ2 (Å2)c 

Co-100-NAC-800e Co-N 4d 1.94 ± 0.03 0.006 ± 0.002 

Co-100-NAC-700 Co-N 4d 1.94 ± 0.03 0.007 ± 0.002 

Co-100-NAC-600 Co-N 4d 1.99 ± 0.03 0.005 ± 0.002 

a Coordination number; b Bond length; c Debye-Waller factor; d The coordination number of 

Co-NAC samples is fixed. e The data of Co-NAC-800 had been published in our previous 

work and added here for comparison purposes.1 
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Figure S7. XPS of Co-NAC prepared at different temperatures. (a) Co2p Spectre and (b) N1s 
Spectre.  
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Figure S8. LSV of different transition metal single-atom on NAC for HER. 1 M KOH as 
electrolyte, M-NAC on carbon fiber paper as working electrode, Pt as counter electrode, 
Ag/AgCl as reference electrode. A Nafion membrane separates working and counter electrodes.  
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Table S4. CHNS analysis of Co-NAC pyrolyzed at different temperatures.  

Catalyst N (wt.%) C (wt.%) H (wt.%) 

Co-100-NAC-600 19.94 64.15 2.76 

Co-100-NAC-700 17.34 66.76 2.30 

Co-100-NAC-800 13.15 69.14 2.10 
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Figure S9. ECSA estimation of Co-25-NAC-800. (a) CV curve at potential range 0.05-0.25 V 
vs RHE; (b) linear relationship between current density and scan rate.  
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Figure S10. ECSA estimation of Co-50-NAC-800. (a) CV curve at potential range 0.05-0.25 
V vs RHE; (b) linear relationship between current density and scan rate.  
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Figure S11. ECSA estimation of Co-100-NAC-800. (a) CV curve at potential range 0.05-0.25 
V vs RHE; (b) linear relationship between current density and scan rate.  
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Figure S12. ECSA estimation of NAC-800. (a) CV curve at potential range 0.05-0.25 V vs 
RHE; (b) linear relationship between current density and scan rate.  
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Figure S13. ECSA estimation of Co-100-NAC-700. (a) CV curve at potential range 0.05-0.25 
V vs RHE; (b) linear relationship between current density and scan rate.  
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Figure S14. ECSA estimation of Co-100-NAC-600. (a) CV curve at potential range 0.05-0.25 
V vs RHE; (b) linear relationship between current density and scan rate.  
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Figure S15. Photo showing hydrogen production during the stability test. 
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Figure S16. XRD characterization of the Co-100-NAC-800 electrode before and after HER 
test. Blue line: fresh Co-100-NAC-800 electrode; orange line: Co-100-NAC-800 after 20 h 
stability test. No diffraction pattern change or Co aggregation was observed. 
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Table S5. The bond length between the metal and the substrate atom calculated from different 
Co-NAC configurations. The table shows the average value of the bond length. 

Metal Bond 
with substrate 

(Å) 
CoN1 Ortho-CoN2  Meta-CoN2 CoN3 CoN4 

Co-N 1.93 1.91 1.90 1.89 1.88 

Co-C 1.88 1.87 1.88 1.84 / 
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Table S6. Comparison of the HER reaction activity between our catalyst and other reported 
Co-based catalysts. 

Catalyst Overpotential  
(mV @ mA/cm2) Electrolyte Reference 

Co-100-NAC-800 310@200 1 M KOH This work 

CoSe2/Co3S4@Co3O4 165@10  
393@ 200 1 M KOH 2 

Co/SmH2 252@100 1.0 M KOH 3 

CoPS3 /CoS2 
heterojunction 36.3@10 0.5 M H2SO4 4 

Ti/Na2Ti6O13/Co(OH)2 159 @10  1.0 M KOH 5 

CoP/Co2P-H 97@10 1.0 M KOH 6 

CoP-CoxOy/CC 43@10 1.0 M KOH 7 

Co3O4/MXene 118@10 1.0 M KOH 8 

Co/CoxSy@NC-750 330@10 1.0 M KOH 9 

NbSSe-Co0.1 173@10 0.5 M H2SO4 10 

2D CoP 144@10 1.0 M KOH 11 

VOx-doped CoP 65@10 
245@400 1.0 M KOH 12 

Co/CoO/B2O3/CF 16@10 
100@100 1.0 M KOH 13 

Ni2P/CoP/NF 56@30 
118@100 1.0 M KOH 14 

Ni0.67Co0.33/Ni3S2@NF 87@10 
203@100 1.0 M KOH 15 

Co/N−CNF 241@10 1.0 M KOH 16 

Co@Zn-N-CNTs 67@10 0.5 M H2SO4 17 
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