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S1. HR-TEM images of nanoflakes 
 
  

Figure S1. HR-TEM of crystalline nanoflakes. (a,b) A flake displaying a (111) lattice 
plane, and the other composing of a large central grain with smaller randomly oriented grains 
attached mostly on the side of the central grains. 
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S2. Characterization of chemically synthesized NiPS3 nanoflakes 
 

 
 
Figure S2. TEM, XRD and absorption spectra of amorphous and crystalline nanoflakes. (a,b) 
TEM images of nanoflakes in amorphous and crystalline phases respectively. Size range of 
crystalline nanoflakes is 20-100 nm. (c,d) XRD obtained from amorphous and crystalline 
nanoflakes of NiPS3. (e) Absorption spectra of amorphous and crystalline nanoflakes of NiPS3. 
Crystalline sample shows a pronounced peak around 2.2 eV. 

 
  



 
 

5 
 

S3. Raman spectrum of nanoflakes 
 

 

Figure S3. Raman spectra of nanoflakes and CVT-Bulk. Raman spectra of nanoflakes and 
CVT-Bulk display the same characteristic Raman phonon modes of bulk NiPS3 (Sci Rep 6, 20904 
(2016)) providing evidence that chemically synthesized nanoflakes and CVT-Bulk sample share 
identical chemical composition and crystalline structure. Data is collected with an excitation 
energy of 2.33 eV at 298 K.     
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S4. Excitation power dependence of PL in a nanoflake  
  
 

 

Figure S4. Excitation power dependence of PL in a nanoflake. PL from a nanoflake under 
different excitation power density for the dataset shown in main Figure 2b.  
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S5. Linear polarized PL in nanoflakes 
 

 

Figure S5. Spin-correlated exciton in nanoflakes. (a,d) Strong degree of linear polarization 
(~90%) for 2 different nanoflakes at 10 K. (b,e) At >150K, degree of linear polarization decreased 
to about 38% and 22% for 2 different nanoflakes respectively. (c,f) Degree of linear polarization 
for different temperatures shows a drop from a near-unity degree of linear polarization to about 
38% & 22% at around TN ≈ 140 K. A residual degree of linear polarization is still present beyond 
the TN.    
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S6. Magnetization curve of nanoflakes 
 

 

Figure S6. Magnetization curve of nanoflakes. Magnetization curve of crystalline NiPS3 
nanoflakes, showing Néel transition temperature TN around 170-190 K. The sample was measured 
at higher magnetic field (1x104 Oe) in the range 50-350 K. At each temperature point, the sample 
was allowed to equilibrate for 10 min. It is believed that the magnetic susceptibility comprises 
antiferromagnetic contribution from the interior of the NFs and the paramagnetic contribution from 
the uncompensated spins arising across the edge of the NFs. This attribution is further supported 
by the inflection point at 110 K, which is most likely the consequence of AFM and paramagnetic 
contributions overlapping with each other. The apparent TN dependence on the size of 
nanoparticles was expected and currently being investigated separately. The diamagnetic 
contribution of the sample holder was measured to be nearly constant in the range between -1.3x10-

7 and -1.4x10-7 A*cm2, which would not alter the profile of the magnetization curve in any 
significant extent and hence wasn’t subtracted from the overall signal. 
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S7. Exciton-phonon bound states  
 

 

Figure S7. Spectral diffusion of phonon replicas. (a) A time dependent spectral image sequence 
of PL collected from a nanoflake with 1s each acquisition. This shows the phonon replica of the 
low energy tail following the spectral diffusion of the zero-phonon peak.  (b) Integrated spectrum 
of the same nanoflake (blue line) showing the main peak P0 and 10 low energy tail peaks labelled 
from P1 to P10. Red lines are individual Gaussian fits to different peaks. Inset shown in log plot. 
(c) Polarization resolved spectra of the same nanoflake with 3 peaks P0, P1 and P5 visible. (d) 
Polarplot of the respective peaks displaying a strong linear polarization oriented in the same 
direction. All data are collected at 10 K. 
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S8. Replica feature  
 

 

Figure S8. Low- and high-resolution PL spectra of 2 different nanoflakes. (a) Low-resolution 
spectrum of a nanoflake showing the main peak P0 and 10 low energy tail peaks labelled from P1 
to P10. Inset shown in log plot. (b) Tail peak positions from the central emission energy of P0 
fitted with a linear function giving a slope of ~35 meV. Arrows show that P4 and P9 slightly 
deviate from the linear function. Ellipsoid shows the pattern of P0-P4 repeats at P5-P9. (c) High-
resolution spectrum of the same nanoflake. Inset shows a zoomed-in portion with noticeable 
equidistant consecutive peak separations marked as δ1 and δ2. (d) Histogram of consecutive peak 
difference gives a value of ~2 meV for δ1 and ~0.7 meV for δ2. All data are collected at 10 K. 
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S9. Holstein model for exciton-polaron quasiparticle and associated PL lineshape 
 
Let us introduce the Holstein model assuming on site interaction of the exciton and phonon states 
described by Bose {creation, annihilation} operators {𝑎𝑎�𝑛𝑛,𝑎𝑎�𝑛𝑛

†} and {𝑏𝑏�𝑞𝑞, 𝑏𝑏�𝑞𝑞
†}, respectively. Notice 

that the exciton operators are presented in the real space whereas the phonon operators are in 
momentum space q. The model Hamiltonian in such a representation reads 

𝐻𝐻� = ℏ ∑ �𝛥𝛥0 + ∑ 𝑔𝑔𝑞𝑞𝜔𝜔𝑞𝑞𝑒𝑒𝑖𝑖𝑞𝑞𝑛𝑛�𝑏𝑏�𝑞𝑞 + 𝑏𝑏�−𝑞𝑞
† �𝑞𝑞 �𝑎𝑎�𝑛𝑛

†
𝑛𝑛 𝑎𝑎�𝑛𝑛 + ℏ∑ 𝜔𝜔𝑞𝑞𝑏𝑏�𝑞𝑞

†𝑏𝑏�𝑞𝑞𝑞𝑞  ,  (1.1) 
with index 𝑛𝑛 running over the exciton delocalization range, ℏΔ0 denoting bare exciton transition 
energy, ℏω𝑞𝑞 standing for the phonon energy, and 𝑔𝑔𝑞𝑞 being dimensionless exciton-phonon coupling 
parameter represented in the momentum space. Following standard approach, we perform the 
Lang-Firsov (displacement) transformation 

𝐷𝐷� = 𝑒𝑒𝑒𝑒𝑒𝑒 �∑ 𝑔𝑔𝑞𝑞𝑒𝑒𝑖𝑖𝑞𝑞𝑛𝑛�𝑏𝑏�𝑞𝑞−𝑏𝑏�−𝑞𝑞
† �𝑎𝑎�𝑛𝑛

†
𝑛𝑛𝑞𝑞 𝑎𝑎�𝑛𝑛�   (1.2) 

of the Hamiltonian (1.1), i.e., 𝐻𝐻�′ = 𝐷𝐷�𝐻𝐻�𝐷𝐷�−1 . The transformation eliminates the exciton-phonon 
coupling term resulting in the Hamiltonian for the uncoupled dressed exciton and phonon states 

𝐻𝐻�′ = ℏ∑ �Δ0 − ∑ 𝑔𝑔𝑞𝑞2𝜔𝜔𝑞𝑞𝑒𝑒𝑖𝑖𝑞𝑞𝑛𝑛
′�̂�𝐴𝑛𝑛′

† �̂�𝐴𝑛𝑛′𝑞𝑞,𝑛𝑛′ ��̂�𝐴𝑛𝑛
† �̂�𝐴𝑛𝑛 + ℏ∑ ω𝑞𝑞𝐵𝐵�𝑞𝑞

†𝐵𝐵�𝑞𝑞q𝑛𝑛 .   (1.3) 
Here, the transformed exciton and phonon operators are 

�̂�𝐴𝑛𝑛 = 𝐷𝐷�𝑎𝑎�𝑛𝑛𝐷𝐷�−1 = 𝑎𝑎�𝑛𝑛𝑒𝑒
−∑ 𝑔𝑔𝑞𝑞𝑒𝑒𝑖𝑖𝑞𝑞𝑖𝑖�𝑏𝑏�𝑞𝑞−𝑏𝑏�−𝑞𝑞

† �𝑞𝑞  ,   (1.4)  
𝐵𝐵�𝑞𝑞 = 𝐷𝐷�𝑏𝑏�𝑞𝑞𝐷𝐷�−1 = 𝑏𝑏�𝑞𝑞 + ∑ 𝑔𝑔𝑞𝑞𝑒𝑒𝑖𝑖𝑞𝑞𝑛𝑛𝑎𝑎�𝑛𝑛

†𝑎𝑎�𝑛𝑛𝑛𝑛 ,    (1.5) 
respectively. The inverse transformation gives the following relationship between bare exciton and 
phonon operators in term of the new operators  

𝑎𝑎�𝑛𝑛 = �̂�𝐴𝑛𝑛𝑒𝑒
∑ 𝑔𝑔𝑞𝑞𝑒𝑒𝑖𝑖𝑞𝑞𝑖𝑖�𝐵𝐵�𝑞𝑞−𝐵𝐵�−𝑞𝑞

† �𝑞𝑞  ,    (1.6) 
𝑏𝑏�𝑞𝑞 = 𝐵𝐵�𝑞𝑞 − ∑ 𝑔𝑔𝑞𝑞𝑒𝑒𝑖𝑖𝑞𝑞𝑛𝑛�̂�𝐴𝑛𝑛

† �̂�𝐴𝑛𝑛𝑛𝑛  .    (1.7) 
 
To simplify the quartic term in the transformed Hamiltonian (1.3), we apply the mean-field 
approximation by introducing the on-site exciton density ⟨�̂�𝐴𝑛𝑛

†�̂�𝐴𝑛𝑛⟩. This approximation results in 
the diagonalized Hamiltonian 

𝐻𝐻�𝑀𝑀𝑀𝑀 = ℏ𝛥𝛥∑ �̂�𝐴𝑛𝑛
†�̂�𝐴𝑛𝑛 + ℏ∑ 𝜔𝜔𝑞𝑞𝐵𝐵�𝑞𝑞

†𝐵𝐵�𝑞𝑞𝑞𝑞𝑛𝑛 ,   (1.8) 
where the exciton polaron energy is Δ = �Δ0 − 2∑ 𝑔𝑔𝑞𝑞2𝜔𝜔𝑞𝑞𝑞𝑞𝑞𝑞 ⟨�̂�𝐴𝑞𝑞

†�̂�𝐴𝑞𝑞+𝑞𝑞⟩� including the polaron shift 
−2∑ 𝑔𝑔𝑞𝑞2𝜔𝜔𝑞𝑞𝑞𝑞𝑞𝑞 ⟨�̂�𝐴𝑞𝑞

†�̂�𝐴𝑞𝑞+𝑞𝑞⟩ proportional to the zero-time exciton correlation function, ⟨�̂�𝐴𝑞𝑞
†�̂�𝐴𝑞𝑞+𝑞𝑞⟩, in 

the momentum space. With the help of Eq. (1.8), we find the following representation of the bare 
exciton operator Eq. (1.6) at time 𝑡𝑡 in terms of the dressed exciton and phonon operators  
 

𝑎𝑎�𝑛𝑛(𝑡𝑡) = 𝑒𝑒
𝑖𝑖
ℏ𝐻𝐻�𝑀𝑀𝑀𝑀𝑡𝑡�̂�𝐴𝑛𝑛𝑒𝑒

∑ 𝑔𝑔𝑞𝑞 𝑒𝑒𝑖𝑖𝑞𝑞𝑖𝑖�𝐵𝐵�𝑞𝑞−𝐵𝐵�−𝑞𝑞
† �𝑞𝑞 𝑒𝑒−

𝑖𝑖
ℏ𝐻𝐻�𝑀𝑀𝑀𝑀𝑡𝑡 = �̂�𝐴𝑛𝑛𝑒𝑒−𝑖𝑖Δ𝑡𝑡 𝑒𝑒

∑ 𝑔𝑔𝑞𝑞𝑖𝑖𝑒𝑒𝑖𝑖𝑞𝑞𝑖𝑖�𝐵𝐵�𝑞𝑞𝑒𝑒−𝑖𝑖ω𝑞𝑞𝑡𝑡−𝐵𝐵�−𝑞𝑞
† 𝑒𝑒𝑖𝑖ω−𝑞𝑞𝑡𝑡�𝑞𝑞 . (1.9)  

 
Power spectrum for the spontaneous photon emission power can be defined as the Fourier 
transform  

𝑆𝑆(ω) = Re∫ 𝑑𝑑𝑡𝑡∞
0 𝑒𝑒𝑖𝑖ω𝑡𝑡𝐶𝐶𝑞𝑞=0(𝑡𝑡)    (1.10) 

of the exciton auto-correlation function 
𝐶𝐶𝑞𝑞(𝑡𝑡) = 〈𝑎𝑎�𝑞𝑞

†(0)𝑎𝑎�𝑞𝑞(𝑡𝑡)〉    (1.11) 
represented in the momentum space. By setting the exciton momentum 𝑘𝑘 = 0, we account for the 
negligibly small momentum of the emitted photons. The angular breakers in Eq. (1.10) denote the 
average with the reduced density operator for the excitons and phonons. The time-evolution of the 
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exciton operator is governed by the Hamiltonian (1.8). By performing the Fourier transformation 
of Eq. (1.11), we find the desired time dependance for the bare exciton operator 

𝑎𝑎�𝑞𝑞(𝑡𝑡) = ∑ �̂�𝐴𝑛𝑛𝑒𝑒𝑖𝑖𝑞𝑞𝑛𝑛 𝑒𝑒∑ 𝑔𝑔𝑞𝑞�𝐵𝐵�𝑞𝑞𝑒𝑒−𝑖𝑖ω𝑞𝑞𝑡𝑡−𝐵𝐵�−𝑞𝑞
† 𝑒𝑒𝑖𝑖ω−𝑞𝑞𝑡𝑡�𝑞𝑞 𝑒𝑒𝑖𝑖𝑞𝑞𝑖𝑖

𝑛𝑛 .    (1.12) 
 
Making substitution of Eq. (1.12) and its Hermitian conjugate at time zero into Eq. (1.11), we find  
the exciton auto-correlation function    

𝐶𝐶𝑞𝑞(𝑡𝑡) =

∑ 〈�̂�𝐴𝑛𝑛
†�̂�𝐴𝑛𝑛′〉𝑒𝑒−𝑖𝑖Δ𝑡𝑡+𝑖𝑖𝑞𝑞�𝑛𝑛−𝑛𝑛

′� �0 �𝑒𝑒−∑ 𝑔𝑔𝑞𝑞∗�𝐵𝐵�−𝑞𝑞−𝐵𝐵�𝑞𝑞
†�𝑞𝑞 𝑒𝑒−𝑖𝑖𝑞𝑞𝑖𝑖𝑒𝑒  𝑒𝑒∑ 𝑔𝑔𝑞𝑞�𝐵𝐵�𝑞𝑞𝑒𝑒

−𝑖𝑖ω𝑞𝑞𝑡𝑡−𝐵𝐵�−𝑞𝑞
† 𝑒𝑒𝑖𝑖ω−𝑞𝑞𝑡𝑡�𝑞𝑞 𝑒𝑒𝑖𝑖𝑞𝑞𝑖𝑖

′

�0�𝑛𝑛𝑛𝑛′ , (1.13) 

where we used a reasonable assumption that at zero time the reduced density operator partitions 
into the product of the phonon vacuum density  |0⟩⟨0|  and the exciton density matrix  〈�̂�𝐴𝑛𝑛

†�̂�𝐴𝑛𝑛′〉. 
Further applying the Baker-Hausdorff formula 𝑒𝑒𝑀𝑀�+𝐺𝐺� = 𝑒𝑒

1
2[𝑀𝑀�,𝐺𝐺�]𝑒𝑒𝐺𝐺�𝑒𝑒𝑀𝑀�  and the relationship 𝑔𝑔𝑞𝑞∗ = 𝑔𝑔−𝑞𝑞, 

we evaluate the phonon matrix element in Eq. (1.13)  

�0 �𝑒𝑒−∑ 𝑔𝑔𝑞𝑞∗�𝐵𝐵�−𝑞𝑞−𝐵𝐵�𝑞𝑞
†�𝑞𝑞 𝑒𝑒−𝑖𝑖𝑞𝑞𝑖𝑖𝑒𝑒  𝑒𝑒∑ 𝑔𝑔𝑞𝑞�𝐵𝐵�𝑞𝑞𝑒𝑒

−𝑖𝑖𝜔𝜔𝑞𝑞𝑡𝑡−𝐵𝐵�−𝑞𝑞
† 𝑒𝑒𝑖𝑖𝜔𝜔−𝑞𝑞𝑡𝑡�𝑞𝑞 𝑒𝑒𝑖𝑖𝑞𝑞𝑖𝑖

′

�0� 

= 𝑒𝑒𝑖𝑖 ∑ �𝑔𝑔𝑞𝑞�
2

𝑞𝑞 sin�𝜔𝜔𝑞𝑞𝑡𝑡+𝑞𝑞�𝑛𝑛−𝑛𝑛′�� 

× �0 �𝑒𝑒∑ 𝑔𝑔𝑞𝑞𝐵𝐵�𝑞𝑞�𝑒𝑒−𝑖𝑖𝜔𝜔𝑞𝑞𝑡𝑡+𝑖𝑖𝑞𝑞𝑖𝑖
′
−𝑒𝑒𝑖𝑖𝑞𝑞𝑖𝑖�𝑞𝑞 −∑ 𝑔𝑔𝑞𝑞𝐵𝐵�𝑞𝑞

†�𝑒𝑒𝑖𝑖𝜔𝜔𝑞𝑞𝑡𝑡−𝑖𝑖𝑞𝑞𝑖𝑖
′
−𝑒𝑒−𝑖𝑖𝑞𝑞𝑖𝑖�𝑞𝑞 �0� 

= 𝑒𝑒∑ �𝑔𝑔𝑞𝑞�
2

𝑞𝑞 {𝑖𝑖 sin�𝜔𝜔𝑞𝑞𝑡𝑡+𝑞𝑞�𝑛𝑛−𝑛𝑛′��+cos�𝜔𝜔𝑞𝑞𝑡𝑡+𝑞𝑞�𝑛𝑛−𝑛𝑛′��−1} 

× �0 �𝑒𝑒−∑ 𝑔𝑔𝑞𝑞𝐵𝐵�𝑞𝑞
†�𝑒𝑒𝑖𝑖𝜔𝜔𝑞𝑞𝑡𝑡−𝑖𝑖𝑞𝑞𝑖𝑖

′
−𝑒𝑒−𝑖𝑖𝑞𝑞𝑖𝑖�𝑞𝑞 𝑒𝑒∑ 𝑔𝑔𝑞𝑞𝐵𝐵�𝑞𝑞�𝑒𝑒−𝑖𝑖𝜔𝜔𝑞𝑞𝑡𝑡+𝑖𝑖𝑞𝑞𝑖𝑖

′
−𝑒𝑒𝑖𝑖𝑞𝑞𝑖𝑖�𝑞𝑞 �0� 

= 𝑒𝑒∑ �𝑔𝑔𝑞𝑞�
2
�𝑒𝑒𝑖𝑖𝜔𝜔𝑞𝑞𝑡𝑡+𝑖𝑖𝑞𝑞�𝑖𝑖−𝑖𝑖

′�−1�𝑞𝑞  .        (1.14) 
This calculation simplifies the exciton auto-correlation function (1.14), to the form  

𝐶𝐶𝑞𝑞(𝑡𝑡) = 𝑒𝑒−∑ �gq�
2

𝑞𝑞 ∑ 〈�̂�𝐴𝑛𝑛
†�̂�𝐴𝑛𝑛′〉𝑒𝑒−𝑖𝑖Δ𝑡𝑡+𝑖𝑖𝑞𝑞�𝑛𝑛−𝑛𝑛

′�
𝑛𝑛𝑛𝑛′ 𝑒𝑒∑ �gq�

2
𝑒𝑒𝑖𝑖ωq𝑡𝑡+𝑖𝑖𝑞𝑞�𝑖𝑖−𝑖𝑖

′�
𝑞𝑞  . (1.15) 

 
A final touch in our derivation is to express the exciton density matrix via the exciton Wigner 
distribution function   

 ��̂�𝐴𝑛𝑛
†�̂�𝐴𝑛𝑛′� = ∑ 𝑊𝑊 �𝑛𝑛+𝑛𝑛

′

2
, κ�κ 𝑒𝑒𝑖𝑖κ�𝑛𝑛′−𝑛𝑛�,    (1.16) 

of momentum κ and coordinate (𝑛𝑛 + 𝑛𝑛′)/2. Introducing this result in Eq. (1.15), we obtain 
𝐶𝐶𝑞𝑞(𝑡𝑡) = 𝑒𝑒−∑ �𝑔𝑔𝑞𝑞�

2
𝑞𝑞 ∑ 𝑓𝑓𝜅𝜅 𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡+𝑖𝑖(𝑞𝑞−𝜅𝜅)𝑛𝑛

𝑛𝑛𝜅𝜅 𝑒𝑒∑ �𝑔𝑔𝑞𝑞�
2
𝑒𝑒𝑖𝑖𝜔𝜔𝑞𝑞𝑡𝑡+𝑖𝑖𝑞𝑞𝑖𝑖𝑞𝑞  ,  (1.17) 

as a function of the momentum space exciton distribution function 𝑓𝑓κ ≡ ∑ 𝑊𝑊 �𝑛𝑛+𝑛𝑛
′

2
, κ�𝑛𝑛+𝑛𝑛′ . 

To complete the calculation, we expand the last exponential in Eq. (1.17) into the Taylor series 
and perform the summation over n and κ to obtain 
 
𝐶𝐶𝑞𝑞(𝑡𝑡) = 𝑒𝑒−∑ �𝑔𝑔𝑞𝑞�

2
𝑞𝑞 ∑ ∑ …𝑞𝑞1 ∑ 𝑓𝑓𝑘𝑘+𝑞𝑞1+⋯+𝑞𝑞𝑚𝑚

𝑚𝑚!
�𝑔𝑔𝑞𝑞1�

2 … �𝑔𝑔𝑞𝑞𝑚𝑚�
2 𝑒𝑒−𝑖𝑖�𝑖𝑖−(𝜔𝜔𝑞𝑞1+⋯+𝜔𝜔𝑞𝑞𝑚𝑚)�𝑡𝑡

𝑞𝑞𝑚𝑚 
∞
𝑚𝑚=0 . (1.18) 

In this expression, we sum over all possible m-phonon scattering events contributing to the exciton 
auto-correlation function. It is important to notice that the distribution function for the exciton 
momenta, 𝑓𝑓𝑞𝑞+𝑞𝑞1+⋯+𝑞𝑞𝑚𝑚, accounts for the phonon recoil effect as required by the momentum 
conservation, i.e., explicitly depends on 𝑘𝑘 + 𝑞𝑞1 + ⋯+ 𝑞𝑞𝑚𝑚. Therefore,  𝑓𝑓𝑞𝑞+𝑞𝑞1+⋯+𝑞𝑞𝑚𝑚 is an important 
parameter defining relative contribution of each multi-phonon process.  
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Making the substitution of Eq. (1.18) into Eq. (1.10) and evaluating the Fourier integral, we find 
desired expression for the photon emission lineshape 
𝑆𝑆(ω) = 𝑒𝑒−∑ �𝑔𝑔𝑞𝑞�

2
𝑞𝑞 ∑ ∑ …𝑞𝑞1 ∑ 𝑓𝑓𝑞𝑞1+⋯+𝑞𝑞𝑚𝑚

𝑚𝑚!
�𝑔𝑔𝑞𝑞1�

2 … �𝑔𝑔𝑞𝑞𝑚𝑚�
2  γ/π

�ω−Δ+𝜔𝜔𝑞𝑞1+⋯+𝜔𝜔𝑞𝑞𝑚𝑚�
2
+γ2𝑞𝑞𝑚𝑚 

∞
𝑚𝑚=0  , (1.19) 

where the exciton dephasing rate 𝛾𝛾 is introduced. Notice that in accords with the discussion above, 
the exciton momentum distribution function 𝑓𝑓𝑞𝑞1+⋯+𝑞𝑞𝑚𝑚 defines spectral weight of each m-photon 
spectral replica.  Eq. (1.19) significantly simplifies under the assumption that the exciton-phonon 
coupling, 𝑔𝑔𝑞𝑞, and optical phonon frequency, 𝜔𝜔𝑞𝑞, have flat dispersion curve, i.e., independent of 
the momentum q. Respectively, denoting them as  𝑔𝑔 and 𝜔𝜔𝑝𝑝ℎ we recast Eq. (1.19) to the form 

𝑆𝑆(ω) = 𝑒𝑒−𝑁𝑁|𝑔𝑔|2 ∑  |𝑔𝑔|2𝑚𝑚

𝑚𝑚!
 𝐴𝐴𝑚𝑚 γ/π

�ω−Δ+𝑚𝑚𝜔𝜔𝑝𝑝ℎ�
2
+γ2

 ∞
𝑚𝑚=0  ,   (1.20) 

where N is the total number of sites in the lattice. In Eq. (1.20) each m-phonon lineshape function 
is weighted with the factor 

𝐴𝐴𝑚𝑚 = ∑ …𝑞𝑞1 ∑ 𝑓𝑓𝑞𝑞1+⋯+𝑞𝑞𝑚𝑚𝑞𝑞𝑚𝑚 .    (1.21) 
A simple estimate for 𝐴𝐴𝑚𝑚 can be performed assuming that the exciton momentum distribution is 
sharply peaked around zero, i.e., the exciton is spatially delocalized over all N sites of the lattice. 
In this case the distribution function can be approximated as 𝑓𝑓𝑞𝑞 = �2𝜋𝜋

𝑎𝑎
� 𝛿𝛿(𝑞𝑞), where 𝑎𝑎 is the lattice 

period. Performing intergradation over the Brillouin zone in Eq. (1.21), we find that 𝐴𝐴𝑚𝑚 = 𝑁𝑁𝑚𝑚. 
This result shows that the exciton-phonon coupling scales as √𝑁𝑁𝑔𝑔 allowing for the thermodynamic 
limit making application of our theory scalable finite size nano-structures to the bulk limits.  
 
Fitting PL spectra using exciton-polaron Holstein model 
 
To fit the experimental data, we generalize Eq. (1.21) with 𝐴𝐴𝑚𝑚 = 𝑁𝑁𝑚𝑚 to the case of three 
independent vibration modes. The result is  

𝑆𝑆(ω) = 𝑆𝑆𝑜𝑜𝑒𝑒−𝑔𝑔1
2−𝑔𝑔22−𝑔𝑔32 ∑ ∑ ∑ 𝑔𝑔1 

2𝑚𝑚1𝑔𝑔2
2𝑚𝑚2𝑔𝑔3

2𝑚𝑚3

𝑚𝑚1!𝑚𝑚2!𝑚𝑚3!
𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚3=0

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚2=0     ×𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚1=0
  �𝑚𝑚1𝛾𝛾𝑝𝑝ℎ1+𝑚𝑚2𝛾𝛾𝑝𝑝ℎ2+𝑚𝑚3𝛾𝛾𝑝𝑝ℎ3+𝛾𝛾�

�ω−Δ+𝑚𝑚1𝜔𝜔𝑝𝑝ℎ1+𝑚𝑚2𝜔𝜔𝑝𝑝ℎ2+𝑚𝑚3𝜔𝜔𝑝𝑝ℎ3�
2
+�𝑚𝑚1𝛾𝛾𝑝𝑝ℎ1+𝑚𝑚2𝛾𝛾𝑝𝑝ℎ2+𝑚𝑚3𝛾𝛾𝑝𝑝ℎ3+𝛾𝛾�

2  ,  (1.23) 

 
where for the sake of brevity we replaced √𝑁𝑁|𝑔𝑔| → 𝑔𝑔 for the exciton-phonon coupling parameters 
and added the phonon line broadening 𝛾𝛾𝑝𝑝ℎ.  
Results of the data fit with the three-mode model (1.23) are presented in Figure S9 and Table S1. 
The model reproduces well the main features of the experimental plot. Extracted values for the 
exciton-phonon coupling parameter, 𝑔𝑔, are all less than one suggesting relatively weak coupling 
regime which is consistent with the observed Poissonian as opposed to the Gaussian type (blue 
and gray lines) of the phonon replica progression.      
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Table S1. Fit parameters. Parameters obtained from fitting PL shown on Figure S9 using Eq. 
(1.23) with 𝑀𝑀𝑚𝑚𝑎𝑎𝑚𝑚 = 10. Zero phonon line is characterized by ℏΔ = 2.1 ± 2 × 10−4 eV and ℏ𝛾𝛾 =
2.4 ±0.2 meV. Obtained normalization perfector is 𝑆𝑆𝑜𝑜 =  1293 ± 36.  
 
 ℏ𝝎𝝎𝒑𝒑𝒑𝒑 / meV ℏ𝜸𝜸𝒑𝒑𝒑𝒑 / meV 𝒈𝒈 
Phonon mode 1 32.8 ± 0.7 7.4 ± 1.3 0.49 ± 0.03 
Phonon mode 2 68.5 ± 0.7 4.8 ± 1.0 0.39 ± 0.02 
Phonon mode 3 163.0 ± 0.6 8.8 ± 0.9 0.58 ± 0.01 

 
 
 
 
 
 
 
 
 
 

 

 
Figure S9. Holstein exciton-polaron model fits. Log plot of experimental PL spectra (solid 
black) from Figure 3a in the main text overlaid with line-shape fits (red line) using Eq. (1.23) 
derived using the adopted Holstein exciton-polaron model. Fit parameters are summarized in 
Table S1. Using the fit parameter for Phonon mode 1 (Tables S1), we calculated PL spectrum 
(green line) for the single phonon mode model. An increase of the exciton phonon coupling to 
𝑔𝑔1 = 2.3 and 𝑔𝑔1 = √9.9 = 3.15 in this model results in the PL lineshapes shown by the 
magenta and blue lines, respectively. Further changing the line broadening parameters to ℏ𝜸𝜸𝒑𝒑𝒑𝒑 
= 0 meV and ℏ𝛾𝛾 = 10 meV in the single mode calculation but retaining 𝑔𝑔1 = √9.9 = 3.15 
allowed us to resolve the phonon mode replica (gray line) washed out in the blue line.   
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S10. Charging model for spectral diffusion 
  
The model has two essential parts. First, the inhomogeneous broadening of the fluorescence 
spectrum is assumed to be caused by fluctuations in the exciton binding energy. These fluctuations 
are proportional to fluctuations in the intralayer electric field through the first-order (linear) Stark 
shift. Second, electric field fluctuations are caused by sudden shifts of the charge density in the 
nanoflake, which arise from interlayer charge transfer due to hopping of hot electrons and holes 
just after laser excitation and before thermal relaxation.  
 
Linear Stark Shift 
 
Let us assume that the stochastic jumping of the exciton emission spectrum, with periodic 
frequency shifts in multiples of ~1 meV, is due to fluctuations in the Stark shift of the excitons 
confined to two-dimensional layers due to charge transfer between adjacent layers. In first order 
perturbation, the energy shift 
 𝛿𝛿 = −�⃗�𝜇 ⋅ 𝐸𝐸�⃗  , (2.1) 

associated with exciton emission due to an electric field E depends on the electric dipole operator
µ . For an electric dipole moment 𝜇𝜇 ∼ 10𝐷𝐷, a shift of 1 meV requires fields as high as 105 V/cm. 

 
Figure S10. Parallel capacitor model. Shown here is schematic for a 4-layer nanoflake, modeled as 
a set of 4 parallel conducting layers with area A and layer periodicity d.  The ith layer has charge 

i iq n e=  which is an integral multiple of the electronic charge, with positive and negative integer in  
corresponding to whether the excess charge is comprised of holes or electrons, respectively. A change 
in state occurs when either the hole or the electron of an energetic electron-hole pair, created by the 
laser in any one of the 4 layers, hops to an adjacent layer before complete thermal relaxation can occur. 
In this illustration, we assume that the transfer occurs between layers 2 and 3, with 2 2 1n n→ +  , and 

3 3 1n n→ − . This can happen with the transfer of an electron from layer 2 to layer 3, or with the transfer 
of a hole from layer 3 to layer 2.   
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To first approximation, consider the nanoflake to act as a capacitor, with each layer serving as a 
uniformly charged plate. In such a case, the electric field,  
 
 𝐸𝐸 = 𝑒𝑒

𝜅𝜅𝜀𝜀0𝐴𝐴
∼ 105V/cm , (2.2) 

due to single-electron charging is the right order of magnitude for a 1 meV Stark shift if the product 
𝜿𝜿𝜿𝜿 ≃ 𝟐𝟐 × 𝟏𝟏𝟎𝟎𝟑𝟑nm𝟐𝟐. For a dielectric constant 𝜿𝜿 ≃ 𝟓𝟓 in agreement with calculations for bulk 
NiPS3,1 this corresponds to an area 𝜿𝜿 ≃ 𝟒𝟒𝟎𝟎𝟎𝟎nm𝟐𝟐 suggesting lateral dimensions on the order of 20 
nm. This is within reasonable agreement of AFM measurements reported in Figure 1b.  

Charge Hopping Rates 
 
Introduction of a rate model for the hopping of electrons and holes sharpens this discussion.  
Consider a nanoflake consisting of N parallel conducting layers, each with an area A , separated 
from one another with a thickness d . Figure S10 shows a schematic of a four-layer structure as 
an illustration. The ith layer has charge 𝑞𝑞𝑖𝑖 = 𝑛𝑛𝑖𝑖𝑒𝑒 , which is an integral multiple of the electronic 
charge, with positive and negative integer in  corresponding to whether excess charge is comprised 
of holes or electrons, respectively. Thus, the charge state of the nanoflake is determined by the set 
of integers { }in . A change in state occurs when either the hole or the electron of a laser-produced 
energetic electron-hole pair, created in any one of the layers, hops to an adjacent layer before 
thermal relaxation can occur. Figure S10 illustrates the case where charge transfer occurs between 
layers 2 and 3, with 2 2 1n n→ +  , and 3 3 1n n→ − . The rate 

 ( )( )
,

;Uexp /
;U1

f if i
f i

f i

UU U kT
R R

U
 >− −=  <

  (2.3) 

for changing from an initial state { }1 2 3 4, , ,
i

n n n n  to a final state { }1 2 3 4, 1, 1,
f

n n n n+ −  is given by 

the sum e hR R R= +  of electron and hole hopping rates. The Boltzmann factor 

( )( )exp /f iU U kT− −  expresses detailed balance between initial and final states with energies iU  

and fU  respectively. After excitation, an electron hole pair will immediately begin thermalizing 
to a temperature of 10 K (~1 meV), after which hops between layers are frozen out.  Thus kT  in 
Eq. (2.3) is an effective thermal energy for rare charge-transfer events, expected to lie somewhere 
between 1 meV and 200 meV , the difference ghν ε−  between the 2.4 eV laser excitation energy 
and the 2.2 eV band gap. The initial and final charge-state energies can be determined by the spatial 
integration of the electrical energy density 21

2 Eε . If the charge is confined to thin conducting 
planes in each layer, the energy 

 { }( )
221 1

2
0

1 1 1

1
2 2

jN N

i j i
j j i

eU n Ad E n
C

κε
− −

= = =

 
= =  

 
∑ ∑ ∑ ,  (2.4) 

can be written as a sum over the square of the electric field penetrating the potential-barrier regions 
separating each of the planes. For a nanoflake with N layers, there are N-1 such regions. In writing 
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the second equality in Eq. (2.4) we have used Gauss’s law to express the electric field 

0
1

/
j

j i
i

E e n Aκε
=

= ∑ in the jth barrier in terms of the charge 
1

j

i
i

e n
=
∑  distributed in the conducting 

layers preceding it. We have also introduced the capacitance of a single layer, 
 
 𝐶𝐶 = 𝜅𝜅𝜀𝜀0𝐴𝐴

𝑑𝑑
≃ 4 × 10−17𝐹𝐹 , (2.5) 

for a typical interlayer distance 𝑑𝑑 ∼ 0.5nm. Thus, the energy change between initial and final 
states will be quantized in multiples of 𝑒𝑒2/2𝐶𝐶 ≃ 2meV.   
 
Kinetic Monte Carlo 
 
Spectral diffusion can be simulated by following the charge state of the nanoflake in time in a 
Monte Carlo simulation of a continuous-time random walk.2 For an N-layer system, a given charge 
state, 

 { }

{ }
{ }
{ }

{ }

1 2 3 4 1

1 2 3 4 1

1 2 3 4 1 2 3 4 1

1 2 3 4 1
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−

−

−

−

±
±

→ ±

±









  (2.6) 

is connected to 2(N-1) neighboring states enumerated here by hopping rates ,f iR  of the form given 

in Eq. (2.3). For each step of the random walk, the initial energy { }( )iU n  associated with presently 

occupied state, and the final energy { }( )fU n  for each of the neighbors, are used to calculate 2(N-
1) different values of the hopping rate Eq. (2.3) . The final state is then determined from a uniform 
distribution according to its relative weight, , , ,

'
/f i f i f i

f
w R R= ∑ . At the same time, a dwell time 

associated with the initial state is selected from an exponential distribution of dwell times,  

 /1( ) it
i

i

t e τψ
τ

−=  , (2.7) 

where the lifetime 
1

,i f i
f

Rτ
−

 
=  
 
∑  is the reciprocal of the sum of all 2(N-1) rates.  In Figure S11, 

we follow the charging effect on the Stark shift in an N-layer system in time for a single random 
walk, to qualitatively compare results of the simulation to the observed temporal evolution of the 
spectral jumping. We also make a time-weighted histogram of results, Figure S12, to determine 
the steady-state probability for an exciton to emit with a particular Stark shift. 
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Electric Field within a Layer 
 
Explicit calculations of the Stark shift (Figure S11 and Figure S12) require knowledge of average 
electric field applied to the exciton states in each layer. An exciton embedded in a 2-D charged 
plane is subjected to the average,  

   
1

(layer)
1 1 10 0

2
2 2

j j j

j i i i j
i i i

e eE n n n n
A Aκε κε

−

= = =

   
= + = −   

   
∑ ∑ ∑  , (2.8) 

of the electric field immediately above and below the plane. According to (2.8), if there is no 
charge in the jth layer, i.e., if 0jn = , then the field in the jth layer is an even multiple of 0/ 2e Aκε . 
If 0jn ≠  , then the field in the j-th layer will be an even multiple of  0/ 2e Aκε  for even jn , and 
an odd multiple of 0/ 2e Aκε  for odd jn .  If charge residing within a layer quenches exciton 
emission such that only uncharged layers participate in the spectrum, the Stokes shift will be 
quantized in multiples of 𝑒𝑒𝜇𝜇/𝜅𝜅𝜀𝜀0𝐴𝐴 ∼ 2meV. If charge residing with a layer has no quenching 
effect, then the Stark shift will be quantized in multiples of 𝑒𝑒𝜇𝜇/2𝜅𝜅𝜀𝜀0𝐴𝐴 ∼ 1meV. Partial quenching 
gives a superposition of the two intervals, in agreement with observation. For the plots in Figure 
S11 and Figure S12, we have introduced partial quenching by allowing layers with no charge 
and/or with one excess charge to be four times more likely to emit photons than any of the other 
charge states.  

 
Figure S11. Spectral diffusion. Shown is an illustration of spectral diffusion versus time, 
following the evolution of the continuous time random walk for 50 hops for a nanoflake with 15 
layers. δThe horizontal axis displays the Stark shift , and time is displayed on the vertical axis. 
The intensity of emission is indicated by the color temperature on a scale from 0 (blue) to a 

δmaximum of 60 (red). Abrupt changes in color indicate hops. Initially  =0, none of the layers 
δhas yet to acquire excess charge, and the intensity maximum. After 50 hops,  ranges from -3 

δmeV to 3 meV. The dispersion in is controlled by a single dimensionless parameter 
2( / 2 ) / 0.02e C kT = 2 / 2 2meVe C =. For this corresponds to 𝑘𝑘𝑘𝑘 ≃ 0.1eV. The Stark shift is 

0/ 2 1meVe Aµ κε =quantized in multiples of  , while the length of the time-axis determined by 
10.1sR −=the hopping rate. Here .  
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Fine Structure of PL Spectrum 
  
The simplest model for the emission spectrum is to assume linear exciton-phonon coupling to a 
single dispersionless optical phonon band with frequency 0ω .3 Neglecting gauge terms generated 
in the Lang-Firsov transformation, the low-temperature spectrum (follows from the Holstein 
Model in S1 with infinitesimal line widths),  

 ( )2
2

0
0

( )
!

m
g

m

gS e m
m

ω δ ω ω
∞

−

=

= − ∆ +∑ ,  (2.9) 

is a set of equally spaced lines, beginning with the 0-0 line at ω = ∆ , with successively lower 
energy phonons in multiples of 0ω weighted by a Poissonian distribution determined by the square 

of the dimensionless coupling constant 0/ 2g x xδ=  measuring the oscillator displacement xδ  
in multiples of the zero point amplitude 0x .3  Let us assume that the exciton is linearly coupled to 
three optical phonons, with energies 1 31meVω = , 2 68meVω =  , and 3 168meVω = . (The 
phonon energies are slightly tweaked from the values obtained from the low-resolution PL spectra 
fit in Table S1.) A line spectrum can be constructed that reproduces most of the experimental 
features in Figure 3a (except for the P4 line) by choosing coupling constants 1 0.49g =  , 2 0.38g =

 
 
Figure S12. Stark shift comb. The figure shows the steady-state probability to observe 
different values of δ  for a 15-layer nanoflake. The same parameter values were used for Figure 
S11. The histogram displays the time-weighted spectrum for 20,000 hops. The spectrum shifts 
in multiples of 1.0 meV. We have taken the probability for radiative decay to be 4 times more 
likely in layers with no charge, 0n = , and/or one charge, 1n = ± , and this weighting gives rise 
to the alternating pattern shown here. Correlation between layers having few charges and layers 
having low electric fields causes an enhanced probability in the neighborhood of 𝛿𝛿 ≃ 0. 
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, and 3 0.58g = , respectively. The Stark shift comb described above and shown in Figure S11 has 
been convoluted to provide inhomogeneous broadening. The smoothed histogram was made with 
Gaussian bins having standard deviation 0.35 meV.   The result of the calculation is shown in 
Figure S13 (red line) demonstrating reasonable agreement with the experimental data (black line).  
 
 
 
  

 
Figure S13. Spectrum with three commensurate phonons. Shown is a calculated spectrum 
in which the exciton is weakly coupled to three different phonons, with frequencies that are 
approximately multiples of 33 meV, as described in the text.  This has been superimposed on 
the measured spectrum shown in Figure 2a, with alignment of the 0-0 lines at 2.102 eV. The 
only source of broadening in the calculated spectrum is the inhomogeneous broadening 
provided by the different electrical environments in the different layers, and this has been 
incorporated by convoluting the line spectra with the Stark shift comb shown in Figure S12.  A 
magnification (inset) of the calculated spectrum (red) reveals the periodicity of the comb. The 
energy spacing between high peaks is 2 meV, while the energy spacing from low peak to high 
peak 1 meV. The alternating structure is similar to that seen in the measured spectrum at high 
resolution (black). 
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S11. First-principles calculations of excitons in bulk NiPS3 
 

 

Figure S14. Exciton binding characters in Bulk NiPS3. The exciton state energy levels for 𝑸𝑸 =
0, where the color goes as the oscillator strength associated with a given exciton; see colorbar. The 
electron (light-green shading) and hole (pink shading) wave functions are drawn within the NiPS3 
unit cell (black dashed line) for both high and low energy electron-hole pairs. For low energy 
excitons, the hole density (pink shading) is spread uniformly over nickel, sulfur, and phosphorous 
atomic sites. In contrast, the electron wave function (green shading) is tightly localized to the 
nickel atomic centers. As the exciton energy increases, the hole density becomes more anisotropic, 
with the majority of its weight on the opposite magnetic sublattice. Concomitantly, the electron 
density gradually shifts weight between sublattices. We note that parts of the hole wave function 
are not visible for the low energy excitons since the electron and hole wavefunctions are co-
localized (overlap) on the same atomic sites.   
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S12. No discernible spectral jumps in CVT-Bulk SO-X exciton 
  

 

 

Figure S15. PL intensity-time trace in a CVT-Bulk. PL from a CVT-Bulk collected every 1s at 
8 K. No discernible spectral jumps noticed for SO-X. Our charging model for nanoflakes predicts 
the area dependence of field dependence and applying that to the micrometer sized CVT-Bulk 
would only result in a non-resolvable minute jumps.   
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S13. Excitation energy dependence of PL peaks in a nanoflake  
 

 

Figure S16. Excitation laser energy dependence of PL in a nanoflake. PL collected with 
different excitation laser energies under confocal excitation with a diffraction limited spot size for 
a nanoflake NiPS3 with the same power density of about 70 W/cm2. Two datasets from two 
different nanoflakes are shown. The topmost dataset shows a nanoflake with PL collected with 
excitation energies of 3.06 eV and 2.33 eV. The bottom three spectra are collected from an another 
nanoflake at specified excitation energies. The PL peak energies are not shifting with the excitation 
energies ruling out the Raman lines. All data are collected at 10 K.   
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S14. Multiple PL emissions from same nanoflake   
  

   

Peak-1 

Peak-2 

Peak-1 

Peak-2 

Figure S17. Multiple emitting centers in same nanoflake. (a,b) Two examples for 
PL from same nanoflake showing 2 PL peaks. The right-side polar plots show the 2 
PL peaks are oriented different from each other. We attribute some nanoflakes could 
have multiple grains or that different edges could have resulted in this behavior.  

 

a 

b 



 
 

25 
 

S15. PL experimental methods 
 

 

 

A continuous wave solid state laser with an energy of 2.33 eV is used for sample excitation. The 
laser is reflected through a dichroic beamsplitter and then focused onto the sample (placed in 
Oxford MicrostatHires liquid Helium flow cryostat) to a diffraction limited spot size using a 50×, 
0.7 NA Olympus objective microscope, which is used to both excite the sample and collect the PL. 
Collected photons after passing through the same dichroic beamsplitter and a 545 nm long-pass 
filter go to a spectrometer + LN-cooled CCD combo (Acton SP2300i/Pylon 100BR or Acton 
SP2500i/Pylon 2KB) with 300 g/mm or 1200 g/mm or 2400 g/mm gratings.  

For polarization-resolved spectroscopy, a non-polarizing beamsplitter is used in place of dichroic 
beamsplitter and a Wollaston prism is placed just before the spectrometer + CCD combo to split 
the signal into s and p polarized components. To investigate the PL polarization, a half-wave plate 
is used as an analyzer either in the detection path after the beamsplitter or the excitation path before 
the beamsplitter. For every rotation angle of the half-wave plate analyzer either in the detection 
path or the excitation path, the PL signal containing s and p polarized components are recorded in 
the spectrometer + CCD. The data are post-processed and displayed as polar plots in the figures.   

  

Figure S18. PL experimental setup. PL excitation and detection scheme is shown.  
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