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Optimization of Directional Couplers

In order to reduce the loss of straight waveguides and curved waveguides, the width of 

the bus waveguide is designed to be 500nm to reduce mode leakage. Since the width of 

the waveguide in the active region is 350nm, tapers are required to connect the bus 

waveguide to the active region waveguide. To split the light from the input waveguide 

into two and input them into the two arms of the MZI with equal power, we use a 

directional coupler1. The figure below shows the variation of the intensity of the two 

arms with different lengths of the directional coupler. From Fig. S2 (b), we use a 

coupling length of ~2.39μm
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Figure S1. (a) Structure of directional coupler (b) Output optical intensity share of two ports 

versus coupling length

Orientation of the liquid crystal

The orientation of the liquid crystal is initially parallel to the y-axis, and after 

applying a voltage, the liquid crystal will gradually be parallel to the z-axis as shown 

in the following Figure S2 (a). 

The change in refractive index in different directions2, 3 (n_x, n_y, and n_z) are shown 

in the figure S2 (b).

Figure S2. (a) Orientation of the liquid crystal. (b) n_x, n_y, and n_z versus θ

Powering method and optical testing method of the device.



Figure S3. Schematic diagram of device powering and optical testing.

The schematic diagram of power-on and light-on testing is shown in the figure, in which 

the input and output coupling gratings4 (spectrum shown in Fig. S3) are located outside 

the liquid crystal packaging area for easy connection with optical fibers. The upper ITO 

glass is connected to the substrate with cured UV glue, which is prepared with micro-

nano structures. The width of the coupling grating is about 10um, which is matched 

with the core size of the single-mode fiber. The coupling gratings are connected to the 

bus waveguide by a taper.

Figure S4. Transmission spectrum of coupling grating

 

Power consumption of LC meta-waveguide



Since the driving method of the proposed LC meta-waveguide is compatible with the 

existing Liquid Crystal On Silicon (LCoS) driving method, we measured the power 

consumption of a self-developed LCoS chip which has pixels of 1920×1080 and the 

power consumption required for one pixel is calculated according to the following 

equation:

                        (1)
𝑃𝑙𝑐 𝑚𝑒𝑡𝑎 ‒ 𝑤𝑎𝑣𝑒𝑔𝑢𝑖𝑑𝑒 =

𝑝𝑙𝑐𝑜𝑠

𝑁𝑝𝑖𝑥𝑒𝑙

                           (2)𝑝𝑙𝑐𝑜𝑠 = 𝑉𝑑𝑟𝑖𝑣𝑒𝐼𝑑𝑟𝑖𝑣𝑒

Where , and  , which is the result of our test 𝑁𝑝𝑖𝑥𝑒𝑙 =  1920 × 1080 𝑝𝑙𝑐𝑜𝑠 ≈ 22 𝑚𝑊

driving the entire chip. Therefore, it can be estimated that the power consumption of a 

single pixel is 10 nW. The driving method of the meta-waveguide is the same as that of 

the LCoS device. Therefore, it can be concluded that the power consumption of a single 

meta-waveguide phase shifter is also 10 nW.

Figure S5. Power consumption measurement of self-developed LCoS chip



Network architecture

We incorporated two 2×2 convolutional layers near the input layer, which were 

accelerated by the LCM-OCA. We trained this network on the CIFAR10 dataset and 

saved the model parameters when the cross-entropy loss function converged and the 

network achieved accurate classification on the test set. By modifying specific 

parameters, we accelerated parts of the network structure with the LCM-OCA. Our 

model has low complexity, fast computation and convergence speeds, and excellent 

performance on the classification task of the dataset. The performance of the modified 

model did not decrease after the parameter changes.

The CIFAR105 dataset is a ten-classification task dataset with 60,000 images, 

including 50,000 images in the training set and 10,000 images in the test set. Each 

image is a 32x32 pixel color image with three channels of R, G, and B. Compared 

with the VGG16 network, our network structure is simpler, with model parameters 

about one-fourth of VGG16. This lightweight network structure is very suitable for 

low-resolution simple datasets, achieving accuracy similar to complex network 

models in a very short training time.

Table S1 Architectural Details of the Network

Layer Kernel Num Activation
Conv-1 2×2 32 ReLU
Conv-2 2×2 32 ReLU
Conv-3 3×3 32 ReLU

Maxpool
Other convolutional layers

Maxpool
FC-512 - - ReLU

FC-10



The above table describes the layers of the network selected in our work, and we have 

used the optical convolutional processing unit to compute the first two convolutional 

layers of the network.

Optimization of convolutional architecture.

We utilized various metrics to evaluate the similarity between different kernels. Our 

findings indicated that the Root Mean Square Error (RMSE) criterion demonstrated the 

most similar optimization trend to the kernels' feature extraction ability. 

The RMSE is defined as follows:

                     (2)
𝑅𝑀𝑆𝐸 =

1
𝑛 × 𝑛
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Here, the 2x2 convolution kernel n=2, represents the parameters of the convolution 𝑦𝑖,𝑗 

kernel in the saved model, and  represents the parameters in the kernel used for 𝑦 '
𝑖,𝑗

replacement. In addition to RMSE, we also employed other optimization functions such 

as Pearson correlation coefficient r and cosine similarity  for kernel cos (𝜃)

replacement.
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                           (4)
cos (𝜃) =

𝑌 ∙ 𝑌'

‖𝑌‖ ∙ ‖𝑌'‖

Where  and  are the 2×2 convolutional kernels in the saved model and the one used 𝑌 𝑌'

for replacement, and  and are their means. Our simulations show that the RMSE has �̅� �̅�'



the closest optimization trend with the ability to extract features from kernels.

Table S2 Convolutional Kernel Replacement Experimental Data Table

Optimization 
Function

Threshold
Success Rate on 

Conv-1
Success Rate on 

Conv-2
Accuracy on the 

Test Dataset
RMSE 0.05 100% 100% 91.80%

r 0.90 100% 100% 45.04%
𝑐𝑜𝑠⁡(𝜃) 0.90 92% 90% 74.81%

Table S3 shows the input image and feature maps outputted by two 2×2 convolutional 

layers in a convolutional neural network6. The first column indicates the category of 

the input image, the second column shows the input image, the third and fourth columns 

show the feature maps outputted by the original first and second 2×2 convolutional 

layers, and the fifth and sixth columns show the feature maps outputted by the first and 

second 2×2 convolutional layers after replacing the convolutional kernels. (Note that 

the feature maps shown here are not normalized, and the actual input images in the 

network are normalized.)

The figure below shows the results of applying optical convolutional processors to 

different types in the dataset7. The third and fourth columns represent the feature maps 

outputted by the original first and second layers of 2x2 convolutional layers, 

respectively. The fifth and sixth columns represent the feature maps outputted by the 

first and second layers of 2x2 convolutional layers after replacing the convolutional 

kernels.

Table S3 the input image and the feature images outputted by two 2×2 convolution layers

class input conv2d_1 conv2d_2 conv2d_1 conv2d_2
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Edge field effect simulation

Figure S6. Edge field effect simulation (a) Simulation structure diagram; (b) 
Simulation results diagram

Large-scale integration needs to consider the edge field effect between pixels. Figure 

S6 a shows the simulation structure diagram, where the pixel size is 20 μm and the pixel 

pitch is 300 nm, with a dual-pixel structure. Figure S6 b shows the simulation results 



under applied voltage, where one pixel is set to a high potential and the adjacent pixel 

is set to a low potential. Due to the edge field effect, the edges of the low-potential pixel 

are influenced by the high-potential pixel, but the impact on the central region of the 

pixel is minimal, which is beneficial for large-scale integration.

Structural details of meta-waveguides

Figure S7 Zoomed-in view of the meta-waveguides.

Comparison of Transmission for meta-waveguides with Different Sizes

Figure S8 Simulation of Transmission Rates for Metawaveguides with Different Sizes. The 



metawaveguides with equal spacing distribution have a width of 350nm, with periods of 380nm, 

400nm, 420nm, and 440nm. The metawaveguides with quadratic distribution have a width of 

350nm and a period of 400nm. It can be observed that the transmission of the metawaveguide with 

quadratic distribution is higher than that of the equal spacing distribution. This is because the 

quadratic distribution can better guide the optical field and minimizes scattered power from the 

meta-waveguides8. 
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