Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Electronic Supplementary Information

Confined synthesis of edge-rich V-doped MoSe₂ nanosheets on carbon black for advanced hydrogen evolution reaction

Xianpei Ren^{a, b}*, Fei Wu^b, Yonghua Wang^b, Quanhong Ou^c, Fei Li^a*

^aApplied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province,

Chengdu University of Technology, Chengdu 610000, China

^bSchool of Physics and Electronic Engineering, Sichuan University of Science and Engineering, Zigong 643000, China

^cSchool of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China.

*Corresponding author: E-mail: renxianpei@163.com; lifei17@cdut.edu.cn.

Computational methods

All calculations were conducted by Vienna Ab initio Simulation Package (VASP) based on the density functional theory (DFT). The exchange-correlation potential is described by using the generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE). The projector augmented-wave (PAW) method is employed to treat interactions between ion cores and valence electrons. The plane-wave cutoff energy was fixed to 400 eV. Given structural models were relaxed until the Hellmann-Feynman forces smaller than -0.02 eV/Å and the change in energy smaller than 10⁻⁵ eV was attained. During the relaxation, the Brillouin zone was represented by a Γ centered k-point grid of 3×3×1. Grimme's DFT-D3 methodology was used to describe the dispersion interactions among all the atoms in adsorption models.

The adsorption energy (ΔE_{*H}) of H is calculated by: $\Delta E_{*H}=E_{*H}-E_{*-1}/2E_{H2}$, where E_{*H} , E_{*} , and E_{H2} are the energies of hydrogen adsorbed on catalyst, isolated catalyst, and hydrogen gas molecule, respectively.

The catalytic activity for HER could be evaluated by the hydrogen adsorption free energy of $\Delta G_{\text{H}*}$: $\Delta G_{\text{H}*} = \Delta E_{*\text{H}} - \Delta E_{\text{ZPE}} - T\Delta S_{\text{H}}$, Where ΔE_{ZPE} is the zero-point energy change between the adsorbed state of the catalyst and gas phase state. ΔS_{H} is the difference in entropy and T is taken as 298.15 K.

Fig. S1 (a, b) SEM images of MoSe₂; (c, d) SEM images of V-MoSe₂.

Catalysts	R _s /Ω	R_{ct}/Ω
MoSe ₂	12	/
V-MoSe ₂	13	5252
MoSe ₂ /CB	20	161
V-MoSe ₂ /CB	13	93

 Table S1. Resistance values of various as-prepared catalysts.

Fig. S2 (a, b, c) Electrochemical cyclic voltammogram of $MoSe_2$, V-MoSe₂ and $MoSe_2/CB$ at different potential scanning rates. The scan rates are 20, 40, 60, 80 and 100 mV/s. The selected potential range where no faradic current was observed is 0.10 to 0.2 V vs RHE.

Fig. S3 (a) Stability of V-MoSe₂/CB in 0.5 M H₂SO₄ solution after 1000 cycles. (b-d) High-resolution Mo 3d, Se 3d and V 2p XPS spectra of V-MoSe₂/CB electrocatalyst before and after HER measurement.

Fig. S4 (a) TEM, (b) HRTEM images of V-MoSe₂/CB after HER measurement.

Fig. S5 The computational models of $MoSe_2$ (a) and $V-MoSe_2$ (b).

Fig. S6 Charge density distributions of V-MoSe₂ (side view), where the color yellow represents the charge increase and the color cyan represents the charge decrease.