Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information for

A copper-functionalized zirconium metal-organic framework for catalytic oxidative carboxylation of olefins and CO₂

Y B. N. Tran,^{ab} Phuong T. K. Nguyen,^{*ab} Vinh-Ai Dao,^c and Van-Dung Le^d

^aInstitute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Viet Nam

^bFaculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Viet Nam.

^cDepartment of Physics, Faculty of Applied Sciences, HCMC University of Technology and Education, Ho Chi Minh City 700000, Vietnam

^dInstitute of Chemical Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam

*To whom correspondence should be addressed: Email, nguyentkieuphuong1@duytan.edu.vn.

Table of Contents

Section S1	Materials and Analytical Techniques	S3 – S4
Section S2	Characterizations of Zr-CPB and Zr-CPB-Cu	S5 - S8
Section S3	Powder X-Ray Diffraction and Structural Refinement of Zr-C	CPB-Cu S9 – S14
Section S4	Gas Adsorption Studies of Zr-MOFs	S15 – S16
Section S5	Catalytic Oxidative Carboxylation Studies of Zr-MOFs	S17 – S22
Section S6	Post-Cycling Characterizations of Recycled Zr-CPB-Cu	S23 – S24
Section S7	References	S25

Section S1: Materials and Analytical Techniques

Chemicals and Materials

Copper (I) iodide (CuI, \geq 99.5%), copper (II) chloride (CuCl₂, 97%), zirconium(IV) oxychloride octahydrate (ZrOCl₂·8H₂O, 99.5%), 1,8-diazabicylcloundec-7-ene (DBU, \geq 99.0%), sodium hydroxide (NaOH, reagent grade, \geq 98%), hydrochloric acid (HCl, 1 M), 4-methoxystyrene (≥97.5%), allylbenzene (98%), 1-allyl-4-methylbenzene (97%), p-methoxyallylbenzene (98%), 1decene (≥97%), tert-butyl hydroperoxide solution (TBHP, 5.0 - 6.0 M in decane), 2,2,6,6tetramethylpiperidine 1-oxyl (TEMPO, 98%), hydrogen peroxide solution (H₂O₂, 30% in water) and balloon (wall thickness 1 mil) were obtained from Sigma-Aldrich. Methyl-4-iodobenzoate (98%), bis(tripheny-phosphine)palladium(II) chloride (PdCl₂(PPh₃)₂, 98%), triethylamine (TEA, ≥99.5%), trimethylsilylacetylene (98%), dicobalt octacarbonyl (Co₂(CO)₈, 95%), anhydrous 1,4dioxane (99.8%), anhydrous tetrahydrofuran (THF, 99.85%), anhydrous methanol (MeOH, 99.5%), N,N-dimethylformamide (DMF, 99.8%), benzoic acid (99.5%), styrene (99.5%), 4chlorostyrene (97%), cyclohexene (99%), aqueous tert-butyl hydroperoxide (TBHP, 70% solution in tetrabutylammonium bromide 99+%), 1,3-bis(2,6water), $(nBu_4NBr,$ diisopropylphenyl)imidazolium chloride (DPIC, 97%), hexadecyltrimethylammonium bromide (HTAB, 99+%), 4-dimethylaminopyridine (DMAP, 99%), tetrabutylammonium chloride (nBu₄NCl, 95%), and N-bromosuccinimide (NBS, 99%) were purchased from Acros Organics. Anhydrous dichloromethane (DCM, \geq 99.5%), ethyl acetate (EtOAc, \geq 99.5%), diethyl ether (Et₂O, \geq 99.7%), hexane (\geq 98.5%), anhydrous sodium sulfate (\geq 99%), ammonium chloride (99.998%), and glacial acetic acid (CH₃COOH, \geq 99.85%) were obtained from Merck Chemical Co. Triethylamine and deionized water (ultrapure, 17.8 MΩ·cm resistivity, obtained from a Barnstead Easypure II system) were degassed with a stream of N₂ for 5 min prior to addition into the Sonogashira coupling reactions. Deuterated solvents, $CDCl_3$ and $DMSO-d_6$, were purchased from Cambridge Isotope Laboratories (Andover, MA). All other chemicals were used without further purification unless otherwise noted.

Analytical Techniques

Optical microscope images were collected on Nikon SMZ1000 Zoom Stereomicroscope. Elemental microanalyses (EA) were performed on a LECO CHNS-932 Analyzer. Thermal gravimetric analysis (TGA) was performed on a TA Q500 thermal analysis system with the sample held in a platinum pan in a continuous airflow. Field-emission Scanning Electron Microscope (FE-SEM) was performed on an ultralow voltage imaging with Hitachi's S-4800 FE-SEM operating at an accelerating voltage of 1 kV. Energy dispersive X-ray analyzer (EDX) was conducted on a Horiba H-7593. For inductively coupled plasma analysis (ICP–MS), activated MOF sample (ca. 10 mg) was placed in 30 μ L of DCl (20% in D₂O) and 570 μ L of DMSO-*d*₆ and then sonicated for 10 min in order to fully digest the MOF and dissolve the linker constituents. X-ray fluorescence (XRF) analysis were carried out using a Bruker M4 Tornado model micro–fluorescence spectrometer.

An Agilent GC System 19091S-433 equipped with a mass selective detector Agilent 7890 (GC-MS) was used to confirm the products using a capillary HP-5MS 5% Phenyl Methyl Silox column ($30 \text{ m} \times 250 \text{ }\mu\text{m} \times 0.25 \text{ }\mu\text{m}$). The temperature program for GC-MS analysis heated samples from 50 °C for 2 min; heated from 50 to 300 °C at 25 °C/min; held at 300 °C for 5 min. Inlet temperature was set at 250 °C and He was used as carrier gas with split flow 24.371 mL/min (split ratio 50 : 1). GC-FID analyses were performed using an Agilent GC System 123-0132 equipped with a flame ionization detector and a DB-1ms column ($30 \text{ m} \times 320 \text{ }\mu\text{m} \times 0.25 \text{ }\mu\text{m}$). The temperature program for GC-FID analysis heated samples from 50 °C for 2 min; heated from 50 to 250 °C at 25 °C/min; held at 250 °C for 4 min. Inlet and detector temperature were set at 250 and 300 °C, respectively. N₂ was used as carrier gas with split flow 188.82 mL/min (split ratio 100 : 1). In back detector FID, H₂ and air flow were conducted with split flow of 30 mL/min and 400 mL/min, respectively. Biphenyl was used as internal standard to calculate the yield of reaction. Recycled MOF catalysts wer recovered by centrifugation and wash with DMF ($3 \times 3 \text{ mL}$), followed by MeOH ($3 \times 3 \text{ mL}$), and then dried under reduced pressure before reused in the next experiments under the same reaction condition.

Section S2: Characterizations of Zr-CPB and Zr-CPB-Cu

Figure S1. Optical microscope image of (A) Zr-CPB and (B) Zr-CPB-Cu crystals.

Figure S2. TGA traces of activated Zr-CPB (red) and Zr-CPB-Cu (blue) at a heating rate of 5 °C min⁻¹ under air flow.

Figure S2. SEM-EDS analysis of Zr-CPB-Cu material.

Table S1. XRF compositional analysis of the activated Zr-CPB-Cu samples

Element	Chemical composition at.%				
	Zr-CPB	Zr-CPB-Cu	recycled Zr-CPB-Cu		
Cu	-	4.68 ± 0.05	4.45 ± 0.10		
Zr	21.47 ± 0.15	20.21 ± 0.12	20.10 ± 0.15		

Figure S4. FT-IR spectra of H₆CPB (green), Zr-CPB (red), and Zr-CPB-Cu (blue)

Section S3. Powder X-Ray Diffraction, Structural Modelling and Refinement of Zr-CPB-Cu

The modeled Zr-CPB-Cu framework was built based on the Zr-CPB (MOF-893) by using Materials Studio 7.0 (Accelrys Software Inc.) software, in which atomic connectivity and monoclinic C2/c space group were retained. Geometry optimization was subsequently performed by using the universal force field implemented in the *Forcite* module, and the unit cell parameters were optimized until obtaining low energy convergence (10^{-4} kcal/mol). By using Reflex module, full profile pattern fitting Pawley refinement was evaluated on the experimental PXRD pattern and modeled structure in the 20 range from 3.8 to 50°. A Pearson VII function was employed to define the peak profile. The unit cell parameters a, b, c, FWHM parameters U, V, W, profile parameters NA, NB, zero point, shift#1, and shift#2 were refined. The background coefficients were refined with 30th order polynomial. The refined unit cell parameters and fractional atomic coordinates for Zr-CPB were provided in Tables S1.

Figure S5. The Pawley refinement of Zr-CPB-Cu. Shown are the experimental (black), refined (red), and difference (green) patterns. The Bragg positions are marked as pink bars.

Empirical formula, Space group		$C_{102}Zr_6Cu_2H_{72}O_{45}, C2/c$					
Refined unit cel	11	$a = 24.5313$ Å, $b = 68.4490$ Å, $c = 19.4107$ Å, $\alpha = \gamma =$					
		90.0000°, $\beta = 92.5973^{\circ}$.					
Pawley refinem	ent	$R_{wp} = 3.55\%, R_{wp} = 3.55\%$	$R_{wp} = 3.55\%$, R_{wp} (w/o background) = 3.04%, $R_p = 2.36\%$				
Atom label	Atom type	x	У	Z	Site Occupancy		
Zr1	Zr	0.15333	0.35997	0.29194	1		
Zr2	Zr	0.23753	0.35956	0.15867	1		
Zr3	Zr	0.28868	0.34906	0.31446	1		
Zr4	Zr	0.19099	0.40364	0.20243	1		
Zr5	Zr	0.32584	0.39072	0.23069	1		
Zr6	Zr	0.24423	0.39271	0.36151	1		
07	0	0.31353	0.37818	0.3268	1		
08	0	0.30906	0.36125	0.22103	1		
09	0	0.22287	0.36269	0.35858	1		
O10	0	0.26098	0.40637	0.26764	1		
011	0	0.25785	0.38929	0.16227	1		
012	0	0.21965	0.3453	0.25107	1		
013	0	0.17493	0.39013	0.29826	1		
014	0	0.17033	0.37339	0.1955	1		
015	0	0.2462	0.32409	0.34731	1		
O16	0	0.40569	0.38116	0.25985	1		
017	0	0.1933	0.43006	0.14599	1		
018	0	0.10244	0.40773	0.19841	1		
019	0	0.07158	0.37126	0.26647	1		
O20	0	0.11443	0.33551	0.33453	1		
O21	0	0.16884	0.33347	0.42839	1		
022	0	-0.1304	0.33592	0.27423	1		
023	0	-0.17604	0.34037	0.3734	1		
O24	0	-0.2886	0.29032	0.69575	1		
025	0	-0.33189	0.27752	0.60551	1		
O26	0	-0.22706	0.16826	0.64469	1		
027	0	-0.17845	0.17218	0.74668	1		
O28	0	0.08692	0.14397	0.62395	1		
O29	0	0.14194	0.16787	0.66083	1		
O30	0	0.27573	0.22045	0.44931	1		
O31	0	0.28336	0.2221	0.56204	1		
O32	0	0.1825	0.39203	0.43202	1		

Table S2. Unit cell parameters and fractional atomic coordinates for the refined Zr-CPB-Cu.

033	0	0.12854	0.36682	0.39254	1
O34	0	0.32166	0.40228	0.73916	1
035	0	0.3173	0.37142	0.70945	1
036	0	0.18151	0.40153	1.09516	1
037	0	0.19637	0.36945	1.07077	1
O38	0	0.35417	0.416	0.18293	1
039	0	0.30477	0.41369	0.08461	1
O40	0	0.64081	0.41196	0.20252	1
O41	0	0.69374	0.41214	0.10875	1
O42	0	0.82237	0.49327	-0.01541	1
O43	0	0.81734	0.50012	0.09435	1
O44	0	0.27935	0.38209	0.4541	1
O45	0	0.3102	0.35218	0.42093	1
O46	0	0.35964	0.3817	0.13724	1
O47	0	0.29601	0.36174	0.08391	1
O48	0	0.19334	0.42981	0.26076	1
O49	0	0.21144	0.42071	0.37297	1
C50	С	0.1297	0.32673	0.39044	1
C51	C	0.10099	0.30903	0.4127	1
C52	С	0.0697	0.29771	0.36526	1
H53	Н	0.06657	0.30166	0.31126	1
C54	С	0.04162	0.28125	0.38749	1
H55	Н	0.0173	0.27279	0.35038	1
C56	C	0.04291	0.27633	0.45774	1
C57	С	0.07548	0.28725	0.5047	1
H58	Н	0.07672	0.28369	0.55913	1
C59	C	0.10466	0.30336	0.48233	1
H60	Н	0.12862	0.31177	0.52001	1
C61	С	0.00509	0.26153	0.48464	1
C62	C	0.0255	0.24413	0.51519	1
C63	С	-0.01036	0.2316	0.54928	1
C64	C	-0.06431	0.23751	0.56023	1
C65	C	-0.08375	0.25542	0.53293	1
C66	С	-0.0505	0.26649	0.49002	1
C67	C	0.11688	0.23774	0.57376	1
H68	Н	0.0995	0.2406	0.62307	1
C69	С	0.0844	0.23914	0.51257	1
C70	С	0.108	0.23568	0.44926	1
H71	Н	0.08354	0.23671	0.40154	1
C72	С	0.16319	0.23067	0.44722	1
H73	Н	0.18035	0.22805	0.39763	1

C74	С	0.19573	0.22901	0.50854	1
C75	С	0.17195	0.23265	0.57184	1
H76	Н	0.1959	0.23159	0.61996	1
C77	С	0.25412	0.2236	0.50654	1
C78	С	0.00859	0.2122	0.57348	1
C79	С	0.02056	0.20896	0.64379	1
H80	Н	0.01429	0.22041	0.68115	1
C81	С	0.04417	0.19138	0.66554	1
H82	Н	0.05642	0.18951	0.71942	1
C83	С	0.0556	0.17687	0.61729	1
C84	С	0.03986	0.17952	0.54765	1
H85	Н	0.04958	0.16862	0.50968	1
C86	С	0.01661	0.19721	0.52574	1
H87	Н	0.00706	0.19956	0.47135	1
C88	С	0.09588	0.16192	0.63634	1
C89	C	-0.10194	0.22366	0.59283	1
C90	С	-0.10808	0.22348	0.66442	1
H91	Н	-0.08784	0.23435	0.69704	1
C92	C	-0.13859	0.2087	0.69459	1
H93	Н	-0.14235	0.20865	0.74996	1
C94	C	-0.16313	0.19394	0.65344	1
C95	С	-0.15754	0.19447	0.58173	1
H96	Н	-0.17506	0.18313	0.54873	1
C97	C	-0.12667	0.20903	0.55205	1
H98	Н	-0.11993	0.20838	0.49749	1
C99	C	-0.19193	0.17733	0.68406	1
C100	C	-0.13804	0.26947	0.62572	1
H101	Н	-0.10202	0.26874	0.66002	1
C102	C	-0.13558	0.26358	0.55674	1
C103	C	-0.18212	0.26527	0.51259	1
H104	Н	-0.18064	0.26112	0.45888	1
C105	C	-0.23135	0.27179	0.53832	1
H106	Н	-0.26705	0.27279	0.50362	1
C107	C	-0.23457	0.27663	0.60849	1
C108	C	-0.18708	0.27587	0.65149	1
H109	Н	-0.18809	0.27973	0.70553	1
C110	С	-0.28729	0.28188	0.63752	1
C111	С	-0.07316	0.28342	0.45105	1
C112	С	-0.08954	0.28123	0.38118	1
H113	Н	-0.08782	0.26702	0.35677	1
C114	С	-0.10795	0.29733	0.34243	1

H115	Н	-0.12204	0.29527	0.28927	1
C116	С	-0.11128	0.31571	0.37365	1
C117	С	-0.0951	0.31779	0.44383	1
H118	Н	-0.09862	0.33174	0.46954	1
C119	С	-0.07556	0.3018	0.48204	1
H120	Н	-0.06279	0.3037	0.53578	1
C121	С	-0.14021	0.33185	0.33789	1
C122	С	0.14152	0.38043	0.43643	1
C123	С	0.10694	0.38305	0.49636	1
C124	С	0.11	0.40053	0.53449	1
H125	Н	0.13634	0.41236	0.51958	1
C126	С	0.07991	0.40286	0.59318	1
H127	Н	0.08424	0.41619	0.62295	1
C128	С	0.04677	0.38767	0.61558	1
C129	С	0.04143	0.37055	0.57604	1
H130	Н	0.01616	0.35865	0.59284	1
C131	С	0.07108	0.36829	0.51659	1
H132	Н	0.06741	0.35473	0.48796	1
C133	С	0.02347	0.38877	0.68468	1
C134	C	0.05858	0.3889	0.74427	1
C135	C	0.03669	0.38905	0.81021	1
C136	C	0.07362	0.38877	0.87244	1
C137	C	0.10622	0.37235	0.88649	1
H138	Н	0.10318	0.35963	0.85332	1
C139	C	0.1426	0.37215	0.9436	1
H140	Н	0.16633	0.35903	0.95376	1
C141	C	0.14663	0.38832	0.98837	1
C142	C	0.11436	0.40491	0.97343	1
H143	Н	0.11582	0.41747	1.00739	1
C144	C	0.07804	0.40511	0.9158	1
H145	Н	0.05325	0.41794	0.90506	1
C146	C	0.17766	0.38648	1.05512	1
C147	C	0.23311	0.38768	0.72905	1
C148	C	0.20688	0.40456	0.75224	1
H149	Н	0.23019	0.41741	0.76744	1
C150	С	0.15021	0.40498	0.75667	1
H151	Н	0.13076	0.41809	0.77497	1
C152	С	0.11877	0.38857	0.73788	1
C153	С	0.14463	0.37174	0.71419	1
H154	Н	0.12088	0.35892	0.69975	1
C155	С	0.20132	0.37128	0.70977	1

H156	Н	0.22028	0.35809	0.69154	1
C157	С	0.29328	0.38711	0.7256	1
C158	С	0.30319	0.36565	0.46615	1
C159	С	0.32435	0.36189	0.53819	1
C160	С	0.19697	0.43327	0.32624	1
C161	С	0.18484	0.45354	0.34921	1
C162	С	0.34194	0.37081	0.08676	1
C163	С	0.37735	0.3686	0.02673	1
C164	С	0.34068	0.4223	0.12268	1
C165	C	0.36994	0.43906	0.09604	1
C166	С	0.38758	0.45402	0.14105	1
H167	Н	0.37595	0.45409	0.19414	1
C168	C	0.42012	0.46903	0.11759	1
H169	Н	0.43318	0.4806	0.15266	1
C170	C	0.43594	0.46906	0.04922	1
C171	C	0.41735	0.45442	0.00358	1
H172	Н	0.42868	0.45459	-0.0497	1
C173	C	0.38414	0.4395	0.02684	1
H174	Н	0.37104	0.42799	-0.00847	1
C175	C	0.46944	0.48516	0.02449	1
C176	C	0.52701	0.48365	0.02786	1
C177	C	0.55815	0.49936	0.00383	1
C178	C	0.55523	0.46569	0.05565	1
C179	C	0.55324	0.46078	0.12564	1
H180	Н	0.52983	0.46958	0.15992	1
C181	C	0.58303	0.44489	0.15271	1
H182	Н	0.58028	0.44154	0.20687	1
C183	C	0.61746	0.43396	0.11118	1
C184	C	0.6191	0.43878	0.04085	1
H185	Н	0.64482	0.43063	0.00722	1
C186	C	0.58776	0.45431	0.01327	1
H187	Н	0.58998	0.45781	-0.04094	1
C188	C	0.65277	0.41824	0.14234	1
C189	C	0.73331	0.49741	0.02766	1
C190	C	0.70709	0.49473	-0.03762	1
H191	Н	0.73051	0.49215	-0.0827	1
C192	C	0.6502	0.49537	-0.04543	1
H193	Н	0.63073	0.49312	-0.09599	1
C194	C	0.61863	0.49872	0.01178	1
C195	C	0.64449	0.50128	0.07702	1
H196	Н	0.62052	0.5038	0.12169	1

C197	С	0.70136	0.50064	0.08495	1
H198	Н	0.7203	0.50268	0.13592	1
C199	С	0.7936	0.49691	0.0359	1
Cu200	Cu	0.90118	0.62042	0.81347	1
H201	Н	0.58565	0.6242	0.9665	1
H202	Н	0.64607	0.62734	1.02209	1
H203	Н	0.61348	0.35295	0.48059	1
H204	Н	1.21477	0.46393	0.32588	1
H205	Н	1.1908	0.45475	0.4063	1
H206	Н	1.14365	0.45747	0.33273	1
Cu207	Cu	0.89753	0.60581	0.71924	1
H208	Н	0.91598	0.59178	0.84969	1
H209	Н	0.04762	0.3728	0.30576	1
H210	Н	0.59152	0.63344	0.76076	1
H211	Н	0.57054	0.61189	0.76751	1
H212	Н	0.84614	0.56654	0.86179	1
H213	Н	0.73327	0.68246	0.61405	1
H214	Н	0.75208	0.68736	0.69005	1
O215	0	0.92463	0.59074	0.64752	1
O216	0	0.93719	0.62921	0.89522	1
H217	Н	0.96838	0.63697	0.87965	1
H218	Н	0.91265	0.63897	0.91477	1
H219	Н	0.92826	0.57741	0.66702	1
H220	Н	0.96268	0.59525	0.64329	1
H221	Н	0.64695	0.62795	0.4473	1
H222	Н	0.65671	0.65391	0.45917	1
H223	Н	0.7114	0.63913	0.428	1

Section S4: Gas Adsorption Studies of Zr-MOFs

Gas selectivity calculated by Henry's Law

Virial-type equation was employed for estimation of Henry's constant:

$$\ln P = \ln N + \frac{1}{T} \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i$$

Where *P* is pressure, *N* is the adsorbed amount, *T* is temperature, a_i and b_i are virial coefficient, and *m* and *n* are the number of virial coefficients required for adequate fitting of the isotherms. As a result, Henry's constant (K_H) at the temperature *T* can be calculated:

$$\mathbf{K}_{\mathrm{H}} = \exp(-\mathbf{b}_{0}) \cdot \exp(-\mathbf{a}_{0}/\mathrm{T})$$

The Henry's Law selectivity for gas component *i* over *j* is calculated:

Figure S6. CO_2 isotherms for Zr-CPB-Cu at 273 (red), 283 (blue), and 298 K (green). Filled and open symbols represent adsorption and desorption branches, respectively. The connecting curves are guides for the eye.

Figure S7. CH₄ isotherms for Zr-CPB-Cu at 273 (red), 283 (blue), and 298 K (green). Filled and open symbols represent adsorption and desorption branches, respectively. The connecting curves are guides for the eye.

Figure S8. N_2 isotherms for Zr-CPB-Cu at 273 (red), 283 (blue), and 298 K (green). Filled and open symbols represent adsorption and desorption branches, respectively. The connecting curves are guides for the eye.

Section S5: Catalytic Oxidative Carboxylation Studies of Zr-MOFs

Figure S9. GC chart of the oxidative carboxylation reaction catalyzed by Zr-CPB-Cu after 12 h. Table S3. Optimization of Zr-CPB-Cu amount for catalysis oxidative carboxylation of styrene and CO_2^a

# A	A mount/mol %	Conversion/ %	Salaativity/%	Yield/%		
	Amount/moi /0		Sciectivity/ 70	Styrene carbonate	Styrene oxide	
1	0.1	87	93	81	5	
2	0.2	97	95	92	0	
3	0.3	95	87	82	0	
4	0.4	93	73	68	0	
5	No-MOF	87	45	39	10	

^{*a*}Reaction conditions: styrene (3.9 mmol), TBHP in decane (7.4 mmol), nBu_4NBr (8 mol %), CO₂ (balloon pressure), 80 °C, 12 h. The catalytic conversion of styrene, selectivity of styrene carbonate, and yield of products were quantified by GC-FID with the use of biphenyl as the internal standard.

Table S4. Oxidative carboxylation reactions catalyzed by Zr-CPB-Cu with different oxidants and co-catalysts.^{*a*}

			-CPB-Cu, oxidant		
		+ 002	Co-catalyst		
#	Oxidant	Co-catalyst	Conversion/ %	Selectivity/ %	Yield/%
1	TBHP in decane		97	95	92
2	TBHP in water		97	86	83
3	H_2O_2	<i>n</i> Bu ₄ NBr	70	62	43
4	NBS		56	85	48
5		nBu ₄ NCl	94	70	66
6		HTAB	79	86	68
7	- TBHP in decane -	DPIC	64	62	40
8		DBU	78	74	58
9		DMAP	72	56	40

^{*a*}Reaction conditions: styrene (3.9 mmol), styrene:oxidant (1:2), Zr-CPB-Cu (0.2 mol%), CO₂ (balloon pressure), 80 °C, 12 h, and co-catalyst (8 mol%). The catalytic conversion, selectivity, and yield were determined by GC-FID analysis using biphenyl as the internal standard. NBS: *N*-bromosuccinimide, *n*Bu₄NCl: tetrabutylammonium chloride, HTAB: hexadecyltrimethylammonium bromide, DPIC: 1,3-bis(2,6-diisopropylphenyl)imidazolium chloride, DBU: 1,8-Diazabicyclo[5.4.0]undec-7-ene, and DMAP: 4-dimethylaminopyridine.

		+ CO ₂ -	atalyst, TBHP 				
#	Туре	Catalyst	$\frac{S_{BET}}{g^{-1}}$	CO ₂ uptake/ cm ³ g ⁻¹	Con. /%c	Sel. /%c	Yield /%
1		ZrOCl ₂ ·8H ₂ O	-	-	86	54	46
2		CuCl ₂	-	-	82	45	37
3	Homo.	H ₆ CPB	-	-	78	50	39
4		$H_6CPB + ZrOCl_2 \cdot 8H_2O + CuCl_2$	-	-	87	58	50
5		Cu-CPB ^[1]	300	58	65	74	48
6	MOE	HKUST-1 ^[1]	1650	107	55	78	43
7	MOF	Zr-bpydc ^[1]	2110	33	88	65	57
8		ZIF-8 ^[1]	1675	16	67	90	60

Table S5. Comparison of different catalysts for oxidative carboxylation of styrene and CO₂.^a

of

^{*a*}Reaction conditions: styrene (3.9 mmol), catalyst (0.2 mol %, based on molecular weight), TBHP in decane (7.4 mmol), *n*Bu₄NBr (8 mol %), CO₂ (balloon pressure), 80 °C, 12 h. The catalytic conversion (Con.) of styrene, selectivity (Sel.) of styrene carbonate, and yield of products were quantified by GC-FID analysis and the use of biphenyl as the internal standard.

Figure S10. Recyclability of the Zr-CPB-Cu in the oxidative carboxylation of styrene and CO₂.

Styrene carbonate^[2-5]

¹H NMR (500 MHz, DMSO) δ 7.42–7.48 (m, 5H), 5.85 (t, 1H, *J* = 7.5, 8.0 Hz), 4.87 (t, 1H, *J* = 8.0, 8.5 Hz), 4.40 (t, 1H, *J* = 8.0, 8.5 Hz) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 155.2, 136.8, 129.8, 129.4, 127.1, 78.2, 71.3 ppm.

GC-MS (EI, 70 eV) *m*/*z*: 164 ([M]⁺), 119, 105, 90.

4-chlorostyrene carbonate^[2-6]

¹H NMR (400MHz, CDCl₃) δ 7.27 – 7.32 (2H, m), 7.42 – 7.44 (2H,m) 5.66 (ddt, 1H, *J* = 7.96, 7.96 Hz), 4.80 (dd, 1H, *J* = 8.43, 8.43 Hz), 4.31 (dd, 1H, *J* = 7.85, 7.89 Hz) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 154.4, 135.8, 134.3, 129.5, 127.2, 77.2, 70.9 ppm.

GC-MS (EI, 70 V). *m*/*z* (70 eV): 201, 199, 139, 138, 127, 91, 90, 89.

4-methoxystyrene carbonate^[4,5]

¹H NMR (400 MHz, CDCl₃) δ 3.83 (3H, s), 4.35 (1H, dd, J = 8.14, J = 8.17), 4.75 (1H, dd, J = 8.17, J = 8.17), 5.62 (1H, dd, J = 8.05, J = 8.11), 6.94 – 6.97 (2H, dd, m), 7.26-7.32 (2H, m) ppm. ¹³C NMR (101MHz, CDCl₃) δ 55.4, 71.1, 78.1, 114.6, 127.4, 127.8, 154.9, 160.8 ppm.

GC-MS (EI, 70 V). m/z (70 eV): 195, 194, 151, 150, 121, 91, 63.

Allylbenzene carbonate^[6,7]

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.15 (m, 5H), 5.07 – 4.85 (m, 1H), 4.54 – 4.38 (dd, 1H), 4.28 – 4.12 (dd, 1H), 3.28 – 3.12 (dd, 1H), 3.09 – 2.86 (dd, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃) *δ* 154.8, 133.9, 129.4, 129.3, 129.0, 129.0, 127.6, 76.8, 68.5, 39.6 ppm.

GC-MS (EI, 70 V) *m*/*z*: 178, 105, 103, 92, 91, 77, 65, 51.

Allyltoluene carbonate^[7,8]

¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.07 (m, 5H), 4.97 – 4.85 (dd, 1H), 4.48 – 4.35 (dd, 1H), 4.24 – 4.12 (dd, 1H), 3.23 – 3.09 (dd, 1H), 3.00 – 2.86 (dd, 1H), 2.37-2.28 (s, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃) *δ* 154.5, 137.3, 130.3, 129.7, 129.7, 129.2, 129.2, 76.9, 68.4, 39.2, 21.1 ppm.

GC-MS (EI, 70 V) *m/z*: 192, 105, 91, 77, 65, 51.

4-allylanisole carbonate^[7,8]

¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.10 (m, 2H), 6.96 – 6.79 (m, 2H), 5.00 – 4.83 (dtd, 1H), 4.50 – 4.39 (dd, 1H), 4.24 – 4.13 (dd, 1H), 3.85 – 3.79 (s, 3H), 3.18 – 3.06 (dd, 1H), 3.02 – 2.87 (dd, 1H) ppm.

¹³C-NMR (101 MHz, CDCl₃) δ 159.1, 154.8, 130.4(2), 125.7, 114.4(2), 77.0, 68.4, 55.3, 38.70 ppm.

GC-MS (EI, 70 V). *m*/*z*: 208, 122, 121, 91, 91, 77, 65, 51.

Dec-1-ene carbonate^[5,7]

¹H NMR (400 MHz, CDCl₃) δ 4.81 – 4.64 (m, 1H), 4.59 – 4.46 (dd, 1H), 4.16 – 3.97 (dd, 1H), 1.90 – 1.75 (m, 1H), 1.75 – 1.60 (m, 1H), 1.55 – 1.16 (m, 12H), 1.02 – 0.74 (m, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) *δ* 155.1, 77.1, 69.4, 33.90, 31.8, 29.3, 29.1, 29.1, 24.4, 22.6, 14.1 ppm.

GC-MS (EI, 70 V). *m*/*z* (70 eV): 201 ([MH]⁺), 110, 96, 81, 67, 55.

Cis-Cyclohexene carbonate^[1,9]

¹H NMR (500 MHz, CDCl₃) δ 4.67 – 4.63 (m, 2H), 1.90 – 1.80 (m, 4H), 1.61 – 1.53 (m, 2H), 1.42 – 1.35 (m, 2H) ppm

¹³C NMR (126 MHz, CDCl₃) δ 155.21, 73.7, 70.7, 19.2 ppm.

GC-MS (EI, 70 eV) *m*/*z*: 142 ([M]⁺), 97, 83, 69, 55, 41, 27, 17.

Section S6: Post-Cycling Characterizations of Zr-CPB-Cu

Figure S11. PXRD patterns of pristine (red) and recycled (blue) Zr-CPB-Cu catalyst.

Figure S12. FTIR of pristine (red) and recycled (blue) Zr-CPB-Cu catalyst.

Figure S13. SEM image of the Zr-CPB-Cu after several catalytic reactions.

Section S6: References

[1] P. T. K. Nguyen, H. T. D. Nguyen, H. N. Nguyen, C. A. Trickett, Q. T. Ton, E. Gutiérrez-Puebla, M. A. Monge, K. E. Cordova and F. Gándara, *ACS Appl. Mater. Interfaces*, 2018, **10**, 733-744.

[2] R. Das, S. Kamra and C. M. Nagaraja, Inorg. Chem. Front., 2023, 10, 2088-2099.

[3] Wang, W. Qiao, H. Liu, S. Li, J. Wu and H. Hou, Inorg. Chem., 2023, 62, 3817-3826.

[4] N. Sharma, S. S. Dhankhar, S. Kumar, T. J. D. Kumar and C. M. Nagaraja, *Chem. Eur. J.*, 2018, **24**, 16662-16669.

[5] J. A. Castro-Osma, A. Lara-Sánchez, M. North, A. Otero and P. Villuendas, *Catal. Sci. Technol.*, 2012, **2**, 1021-1026.

[6] Y. Hou, X. Wang, Y. Guo and X. Zhang, Nanoscale, 2021, 13, 18695–18701.

[7] R. Calmanti, M. Selva and A. Perosa, Green Chem., 2021, 23, 7609-7619.

[8] N. Eghbalia and C.-J. Li, Green Chem., 2007, 9, 213–215.

[9] P. Ramidi, C.M. Felton, B.P. Subedi, H. Zhou, Z.R. Tian, Y. Gartia, B.S. Pierce and A. Ghosh, *J. CO*₂ *Util.*, 2015, **9**, 48–57.