Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Co-N-C catalysts derived from folic acid and mediated by hydrazine

hydrate for selective hydrogenation of quinoline

Xuejiao Rong ^{a#}, Hua Li^{b#}, Ligong Chen ^{*acde}, Binwei Yuan ^f, Anni Guo ^a,

Zhaoshuo Jiang ^a, Guoyi Bai ^g, Bowei Wang^{*acde}

a School of Chemical Engineering and Technology, Tianjin University,

Tianjin 300350, P. R. China. E-mail: bwwang@tju.edu.cn, lgchen@tju.edu.cn

b Tianjin Beichen Hospital, Tianjin 300400, P. R. China.

c Institute of Shaoxing, Tianjin University, Shaoxing, Zhejiang 312300, P.

R. China;

d Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China

e Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China

f Shaoxing Xingxin New Materials Co., Ltd, Shaoxing, Zhejiang 312300,

P. R. China

g School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China

These authors contributed equally to this work

Fig. S1 FTIR spectra of FA and samples before pyrolysis by addition of 0

mL, 2.5 mL and 10 mL hydrazine.

Fig. S2 XRD pattern of Co-FA-10.

Table S1 Particle sizes of Co-N-C-T-10 and Co-N-C-900-2.5 calculatedby Debye-Scherrer Equation.

Sample	Co-N-C-	Co-N-C-	Co-N-C-	Co-N-C-	Co-N-C-
	700-10	800-10	900-10	900-2.5	1000-10
Size/	4.8	7.8	17.3	24.6	28.6
nm					

The Debye Scherrer equation: $D = K\lambda / \beta Cos\theta$, it is used to calculate the crystalline size of the nanoparticles, where D is the nanoparticles crystalline size, K represents the Scherrer constant (0.98), λ denotes the wavelength (1.54), β denotes the full width at half maximum (FWHM).

Fig. S3 SEM images of (a) Co-N-C-700-10, (b) Co-N-C-800-10, (c) Co-

N-C-900-10, (d) Co-N-C-1000-10.

Fig. S4 TEM image of Co-N-C-900-0.

complex	Surface	Pore	Pore	Content(wt%)				
	area	volume	Size					
	(m^2g^{-1})	$(\mathrm{cm}^3\mathrm{g}^{-1})$	(nm)	C	Ν	Н	0	Co
Co-N-C-700-10	421.0	1.146	17.09	40.10	7.22	1.55	11.16	39.97
Co-N-C-800-10	370.1	1.063	16.51	40.99	3.41	1.04	6.27	48.28
Co-N-C-900-10	318.2	0.946	16.06	41.52	1.87	0.74	3.20	52.67
Co-N-C-900-2.5	362.3	0.663	8.69	43.49	1.69	0.55	1.35	52.92
Co-N-C-1000-10	297.0	0.890	15.62	44.01	1.24	0.61	3.90	50.23

 Table S2 Physicochemical properties of different Co-N-C catalysts.

Fig. S5 N₂ adsorption/desorption isotherms of Co-N-C-700-10 (a), 800 (c), 900 (e),1000 (g) and Co-N-C-900-2.5 (i). Pore size distribution of Co-N-C-700-10 (b), 800 (d), 900 (f),1000 (h) and Co-N-C-900-2.5 (j).

Fig. S6 XPS spectra of Co-N-C-700-10, Co-N-C-800-10, Co-N-C-1000-10 and Co-N-C-900-2.5.

	Co-Nx	Pyridinic N	Pyrrolic N	Graphitic N	NOx
Co-N-C-700-10	13.52	34.42	16.03	13.06	22.97
Co-N-C-800-10	35.06	21.72	12.80	14.16	16.25
Co-N-C-900-10	57.46	5.94	4.04	31.12	1.44
Co-N-C-900-2.5	15.97	17.6	9.29	44.10	13.04
Co-N-C-1000-10	44.98	1.75	11.72	40.47	1.09

Table S3 Content of different N doping modes according to XPS.

Table S4 Content of different Co species according to XPS.

	Co ⁰	Co-Ox	Co-Nx	Co satellite
Co-N-C-700-10	31.54	35.68	23.15	9.62
Co-N-C-800-10	31.96	38.16	19.21	10.67
Co-N-C-900-10	40.47	31.82	11.33	16.38
Co-N-C-900-2.5	21.90	34.74	34.93	8.42
Co-N-C-1000-10	23.73	49.44	1.2	25.64

Fig. S7 TEM image of used catalyst.