Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Photophysicochemical and Electrochemical Properties of Pyrene-BODIPY

Platforms

İpek Ömeroğlu^a, Baybars Köksoy^b, Dilek Öztürk^a, Lubna Salah^c, Saad Maksheed^c, Mahmut

Durmuş^{a*}

^aGebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Türkiye ^bBursa Technical University, Department of Chemistry, 16130, Bursa, Türkiye ^cKuwait University, Department of Chemistry, 5969, Safat 13060, Kuwait

**Corresponding Author: Mahmut Durmuş Email: <u>durmus@gtu.edu.tr</u>*

Content

1. Characterization of BODIPY compounds (1-5)
1.1. 4,4'-Difluoro-8-(phenyl)-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (1)S5
1.2. 4,4'-Difluoro-8-(4-iodophenyl)-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-
indacene (2)S7
1.3. 4,4'-Difluoro-8-(phenyl)-2,6-diiodo-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-
indacene (3)
1.4. 4,4'-Difluoro-8-(iodophenyl)-2,6-diiodo-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-
indacene (4)S12
1.5. 4,4'-Difluoro-8-(4-pyrenyl)-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (5)S15
2. Characterization of novel pyrene-BODIPY compounds (5 ⁺ , 6, and 7)S16
3. Electrochemical characterizations
4. X-Ray study of compound 6
References

Table Caption

Table S1. Crysta	1 structure and cryst	al data of BODIPY com	pound 6
------------------	-----------------------	-----------------------	---------

Figure Caption

Fig. S1. ¹ H-NMR spectrum of compound 1 in CDCl ₃ S5
Fig. S2. ¹³ C-NMR spectrum of compound 1 in CDCl ₃ S6
Fig. S3. ¹¹ B-NMR spectrum of compound 1 in CDCl ₃ S6
Fig. S4. ¹⁹ F-NMR spectrum of compound 1 in CDCl ₃ S7
Fig. S5. ¹ H-NMR spectrum of compound 2 in CDCl ₃
Fig. S6. ¹³ C-NMR spectrum of compound 2 in CDCl ₃
Fig. S7. ¹¹ B-NMR spectrum of compound 2 in CDCl ₃
Fig. S8. ¹⁹ F-NMR spectrum of compound 2 in CDCl ₃
Fig. S9. ¹ H-NMR spectrum of compound 3 in CDCl ₃ S10
Fig. S10. ¹³ C-NMR spectrum of compound 3 in CDCl ₃ S11
Fig. S11. ¹¹ B-NMR spectrum of compound 3 in CDCl ₃ S11
Fig. S12. ¹⁹ F-NMR spectrum of compound 3 in CDCl ₃ S12
Fig. S13. ¹ H-NMR spectrum of compound 4 in CDCl ₃
Fig. S14. ¹³ C-NMR spectrum of compound 4 in CDCl ₃ S13
Fig. S15. ¹¹ B-NMR spectrum of compound 4 in CDCl ₃ S14
Fig. S16. ¹⁹ F-NMR spectrum of compound 4 in CDCl ₃ S14
Fig. S17. ¹ H-NMR spectrum of compound 5 in CDCl ₃
Fig. S18. ¹³ C-NMR spectrum of compound 5 in CDCl ₃ S16
Fig. S19. ¹¹ B-NMR spectrum of compound 5 in CDCl ₃ S17
Fig. S20. ¹⁹ F-NMR spectrum of compound 5 in CDCl ₃ S17
Fig. S21. HRMS spectrum of compound 5 ⁺

Fig. S22. HRMS spectrum of compound 6S18
Fig. S23. HRMS spectrum of compound 7S19
Fig. S24. ¹ H-NMR spectrum of compound 5 [•] in CDCl ₃ S19
Fig. S25. ¹³ C-NMR spectrum of compound 5 [•] in CDCl ₃ S20
Fig. S26. ¹³ C-NMR spectrum of compound 6 in CDCl ₃ S20
Fig. S27. ¹³ C-NMR spectrum of compound 7 in DMSO-d ₆ S21
Fig. S28. ¹¹ B-NMR spectrum of compound 5 ⁺ in CDCl ₃
Fig. S29. ¹¹ B-NMR spectrum of compound 6 in CDCl ₃ S22
Fig. S30. ¹¹ B-NMR spectrum of compound 7 in DMSO-d ₆ S22
Fig. S31. ¹⁹ F-NMR spectrum of compound 5 ⁺ in CDCl ₃
Fig. S32. ¹⁹ F-NMR spectrum of compound 6 in CDCl ₃
Fig. S33. ¹⁹ F-NMR spectrum of compound 7 in DMSO-d ₆ S24
Fig. S35. Cyclic voltammograms at different scan rates of synthesized BODIPY compounds (1-7) in DCM with 0.1 M TBAPF6 as supporting electrolyte
Fig. S35. Square wave voltammograms of synthesized BODIPY compounds (1-7) in DCM with 0.1 M TBAPF6 as supporting electrolyte, scan rate 0.05 V/s
Fig. S36. π - π interaction of the solid-state crystal form of iodinated pyrene-BODIPY compound 6

1. Characterization of BODIPY compounds (1-5)

1.1. 4,4'-Difluoro-8-(phenyl)-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (1)

An orange solid. Chemical formula $C_{19}H_{19}BF_2N_2$, (780 mg, 51%). FT-IR (v, cm⁻¹): 3100-3025 (Aromatic-CH), 2955-2851 (Aliphatic-CH), 1462 (B-N). ¹H NMR (500 MHz, CDCl₃) δ , ppm: 7.51-7.50 (m, 3H, Ar-H), 7.31-7.30 (m, 2H, Ar-H), 6.00 (s, 2H, Pyrrole-H), 2.58 (s, 3H, -CH₃), 1.40 (s, 3H, -CH₃). ¹³C NMR (125 MHz, CDCl₃) δ , ppm: 155.46, 143.19, 141.76, 135.03, 131.46, 130.03, 129.15, 128.96, 127.97, 121.21, 14.34. ¹¹B NMR (160 MHz, CDCl₃) δ , ppm: 0.79 (t, *J*: 66.21 Hz). ¹⁹F NMR (470 MHz, CDCl₃) δ , ppm: -146.29 (q, *J*: 98.68 Hz).

Fig. S1. ¹H-NMR spectrum of compound 1 in CDCl₃.

Fig. S2. ¹³C-NMR spectrum of compound 1 in CDCl₃.

Fig. S3. ¹¹B-NMR spectrum of compound 1 in CDCl₃.

Fig. S4. ¹⁹F-NMR spectrum of compound 1 in CDCl₃.

1.2. 4,4'-Difluoro-8-(4-iodophenyl)-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (2)

An orange solid. Chemical formula C₁₉H₁₈BF₂IN₂, (285 mg, 33%). FT-IR (v, cm⁻¹): 3107-3050 (Aromatic-CH), 2959-2852 (Aliphatic-CH), 1466 (B-N). ¹H NMR (500 MHz, CDCl₃) δ, ppm: 7.87 (d, 2H, Ar-H, *J*:7.65 Hz), 7.07 (d, 2H, Ar-H, *J*:7.63 Hz), 6.01 (s, 2H, Pyrrole-H), 2.57 (s, 6H, -CH₃), 1.44 (s, 6H, -CH₃). ¹³C NMR (125 MHz, CDCl₃) δ, ppm: 155.92, 142.95, 140.10, 138.38, 134.59, 131.16, 129.99, 121.46, 94.76, 14.67. ¹¹B NMR (160 MHz, CDCl₃) δ, ppm: 0.73 (t, *J*: 65.80 Hz). ¹⁹F NMR (470 MHz, CDCl₃) δ, ppm: -146.26 (q, *J*: 98.84 Hz).

Fig. S5. ¹H-NMR spectrum of compound 2 in CDCl₃.

Fig. S6. ¹³C-NMR spectrum of compound 2 in CDCl₃.

Fig. S7. ¹¹B-NMR spectrum of compound 2 in CDCl₃.

Fig. S8. ¹⁹F-NMR spectrum of compound 2 in CDCl₃.

indacene (3)

A dark red solid. Chemical formula C₁₉H₁₇BF₂I₂N₂, (175 mg, 78.8%). FT-IR (v, cm⁻¹): 3070-3018 (Aromatic-CH), 2959-2844 (Aliphatic-CH), 1479 (B-N). ¹H NMR (500 MHz, CDCl₃) δ, ppm: 7.55-7.54 (m, 3H, Ar-H), 7.28-7.27 (m, 2H, Ar-H), 2.67 (s, 6H, -CH₃), 1.41 (s, 6H, -CH₃). ¹³C NMR (125 MHz, CDCl₃) δ, ppm: 156.80, 145.40, 141.40, 134.76, 131.32, 129.56, 127.80, 85.69, 29.72, 16.96, 16.05. ¹¹B NMR (160 MHz, CDCl₃) δ, ppm: 0.58 (t, *J*: 64.46 Hz). ¹⁹F NMR (470 MHz, CDCl₃) δ, ppm: -145.64 (q, *J*: 97.09 Hz).

Fig. S9. ¹H-NMR spectrum of compound 3 in CDCl₃.

1.3.

Fig. S10. ¹³C-NMR spectrum of compound 3 in CDCl₃.

Fig. S11. ¹¹B-NMR spectrum of compound 3 in CDCl₃.

Fig. S12. ¹⁹F-NMR spectrum of compound 3 in CDCl₃.

1.4. 4,4'-Difluoro-8-(iodophenyl)-2,6-diiodo-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-

indacene (4)

A dark red solid. Chemical formula C₁₉H₁₆BF₂I₃N₂, (187 mg, 60%). FT-IR (v, cm⁻¹): 3055-3037 (Aromatic-CH), 2962-2851 (Aliphatic-CH), 1454 (B-N). ¹H NMR (500 MHz, CDCl₃) δ, ppm: 7.91 (d, 2H, Ar-H, *J*:7.80 Hz), 7.04 (d, 2H, Ar-H, *J*:7.63 Hz), 2.66 (s, 6H, -CH₃), 1.45 (s, 6H, -CH₃). ¹³C NMR (125 MHz, CDCl₃) δ, ppm: 157.7, 145.15, 139.71, 138.71, 134.31, 131.03, 129.75, 95.39, 85.98, 17.30, 16.09. ¹¹B NMR (160 MHz, CDCl₃) δ, ppm: 0.53 (t, *J*: 64.06 Hz). ⁹F NMR (470 MHz, CDCl₃) δ, ppm: -145.64 (q, *J*: 95.91 Hz).

Fig. S13. ¹H-NMR spectrum of compound 4 in CDCl₃.

Fig. S14. ¹³C-NMR spectrum of compound 4 in CDCl₃.

Fig. S15. ¹¹B-NMR spectrum of compound 4 in CDCl₃.

Fig. S16. ¹⁹F-NMR spectrum of compound 4 in CDCl₃.

1.5. 4,4'-Difluoro-8-(4-pyrenyl)-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (5)

An orange solid. Chemical formula $C_{35}H_{27}BF_2N_2$, (93.21 mg, 80%). FT-IR (v, cm⁻¹): 3107-3030 (Aromatic-CH), 2962-2848 (Aliphatic-CH), 1467 (B-N). ¹H NMR (500 MHz, CDCl₃) δ , ppm: 8.29-8.22 (m, 3H, Pyrene-H), 8.16-8.05 (m, 6H, Pyrene-H), 7.79 (d, 2H, Ar-H, *J*:7.62 Hz), 7.52 (d, 2H, Ar-H, *J*:7.60 Hz), 6.09 (s, 2H, Pyrrole-H), 2.63 (s, 6H, -CH₃), 1.65 (s, 6H, -CH₃). ¹³C NMR (125 MHz, CDCl₃) δ , ppm: 155.64, 143.14, 142.12, 136.67, 134.01, 131.52, 131.34, 130.94, 128.44, 128.14, 127.94, 127.73, 127.63, 127.44, 126.20, 125.43, 125.08, 125.04, 124.71, 124.68, 121.40, 14.65. ¹¹B NMR (160 MHz, CDCl₃) δ , ppm: 0.86 (t, *J*: 65.44 Hz). ⁹F NMR (470 MHz, CDCl₃) δ , ppm: -146.22 (q, *J*: 99.51 Hz).

Fig. S17. ¹H-NMR spectrum of compound 5 in CDCl₃.

Fig. S18. ¹³C-NMR spectrum of compound 5 in CDCl₃.

Fig. S19. ¹¹B-NMR spectrum of compound 5 in CDCl₃.

Fig. S20. ¹⁹F-NMR spectrum of compound 5 in CDCl₃.

2. Characterization of novel pyrene-BODIPY compounds (5+, 6, and 7)

Fig. S21. HRMS spectrum of compound 5[•].

Fig. S22. HRMS spectrum of compound 6.

Fig. S23. HRMS spectrum of compound 7.

Fig. S24. ¹H-NMR spectrum of compound 5⁺ in CDCl₃.

Fig. S25. ¹³C-NMR spectrum of compound 5⁺ in CDCl₃.

Fig. S26. ¹³C-NMR spectrum of compound 6 in CDCl₃.

Fig. S27. ¹³C-NMR spectrum of compound 7 in DMSO-d₆.

0.37

Fig. S28. ¹¹B-NMR spectrum of compound 5⁺ in CDCl₃.

Fig. S29. ¹¹B-NMR spectrum of compound 6 in CDCl₃.

Fig. S30. ¹¹B-NMR spectrum of compound 7 in DMSO-d₆.

Fig. S31. ¹⁹F-NMR spectrum of compound 5⁺ in CDCl₃.

Fig. S32. ¹⁹F-NMR spectrum of compound 6 in CDCl₃.

Fig. S33. ¹⁹F-NMR spectrum of compound 7 in DMSO-d₆.

3. Electrochemical characterizations

Fig. S34. Cyclic voltammograms at different scan rates of synthesized BODIPY compounds (1-7) in DCM with 0.1 M TBAPF6 as supporting electrolyte.

Fig. S35. Square wave voltammograms of synthesized BODIPY compounds (1-7) in DCM with 0.1 M TBAPF6 as supporting electrolyte, scan rate 0.05 V/s.

4. X-Ray study of compound 6

All starting BODIPY compounds (1-4) and pyrene-BODIPY (Halogen free, 5) were not original, and their crystal structures were given in the literature before. The single crystal form of targeted pyrene-BODIPY compound 7 could not be obtained. Only compound 6 was crystalized and solved their crystal structure. The crystal structure of compound 6 was solved using single-crystal X-ray analysis and crystallographic data-refinement details given in Table S1. Suitable crystals for the X-ray diffraction study of compound 6 were obtained from recrystallization by dichloromethane-hexane solvent mixture.

The structure of compound **6** was shown in a triclinic crystal system, P1. As checked in the crystal structure of compound **6**, the BODIPY backbone and pyrene groups were observed at the same plane while the *meso*-phenyl group was orthogonal position to both of BODIPY center and pyrene moiety. These structural features were also compatible with the corresponding literatures including styryl-BODIPY compounds ¹⁻³.

In addition, as the solid crystal structure of compound **1** is examined, it is seen that it has a strong pi-pi interaction (Fig. S36) and the distance between these 2 pyrene groups is 3.904 Å. This interaction is caused by the effect of electron-rich pyrene groups located on the face with face each other. These interactions hold the 2 molecules in a single packaging.

Compound		
CCDC Number	2213850	
Parameters	Compound 6	
Empirical formula	$C_{35}H_{25}BF_2I_2N_2$	
Formula weight	776.18	
Temperature/K	296.15	
Crystal system	Triclinic	
Space group	P1	
a/Å	10.350 (3)	
b/Å	11.258 (3)	
c/Å	15.292 (5)	
$\alpha/^{\circ}$	75.396 (8)	
β/°	75.221 (8)	
$\gamma^{\prime \circ}$	68.248 (7)	
Volume/Å ³	1575.4 (7)	
Z	2	
$\rho_{calc}g/cm^3$	1.636	
μ/mm^{-1}	2.04	
F(000)	756	
Crystal size/mm ³	$0.17 \times 0.05 \times 0.04$	
Radiation	Mo Ka ($\lambda = 0.71073$ A)	
2Θ range for data	1.4 to 25	
collection/°		
Index ranges	$-12 \le h \le 12, 13 \le k \le 13, -18 \le l \le 18$	
Reflections collected	11935	
Independent reflections	5464 [$R_{int} = 0.044, R_{sigma} = 0.0546$]	
Goodness-of-fit on F ²	1.02	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0443, wR_2 = 0.1102$	
Largest diff. peak/hole	0.69, -0.77	

 Table S1. Crystal structure and crystal data of BODIPY compound 6

Fig. S36. π - π interaction of the solid-state crystal form of iodinated pyrene-BODIPY compound 6.

References

- 1. J. Tao, D. Sun, L. Sun, Z. Li, B. Fu, J. Liu, L. Zhang, S. Wang, Y. Fang and H. Xu, *Dyes and Pigments*, 2019, **168**, 166-174.
- 2. C. O. Obondi, G. N. Lim, P. A. Karr, V. N. Nesterov and F. D'Souza, *Physical Chemistry Chemical Physics*, 2016, **18**, 18187-18200.
- D. Öztürk, İ. Ömeroğlu, B. Köksoy, C. Göl and M. Durmuş, *Dyes and Pigments*, 2022, 205, 110510.