Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary materials

Honeycomb-like micro-/nano-hierarchical porous germanium for

high-performance lithium-ion battery anode

Ya Zheng^a, Xiaocheng Li^{a, c*}, Juan Liu^b, Xiaoyu Zhao^a, Nengwen Ding^{a, c}, Qian Zhang^{a, c*},

Shengwen Zhong^a

^aJiangxi Province Key Laboratory of Power Battery and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.

^bJiangxi Province Key Laboratory of Mining Engineering, School of Resources and environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.

^cYichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Yichun 360904 P.R. China

Fig. S1 XRD patterns of Mg₂Ge after nitriding at different temperatures

^{*} Corresponding authors.

Email: xiaocheng_li@jxust.edu.cn; zhangqian@jxust.edu.cn

Fig. S2 SEM image of Mg_2Ge after nitriding

Fig. S3. SEM image of the broken part of hp-Ge particles

Fig. S4. Pore size distribution of hp-Ge and pristine Ge

Fig. S5. Discharge/charge potential profiles of hp-Ge electrode at 0.5 A g^{-1} .

Fig. S6 (a, c) SEM images of the pristine Ge electrode surface before and after cycling; (b, d)

SEM images of the hp-Ge electrode surface before and after cycling

Table S1 Comparison of the electrochemical performance of hp-Ge electrode with those in previous reports

Sample	Synthesis method	Capacity	Cycling stability	Rate capability	Ref.
		(mAh g^{-1} @ A	Capacity (mAh g ⁻¹ @ A g ⁻¹), after	(mAh g ⁻¹ @A g ⁻¹)	
		g ⁻¹)	(n) cycles, capacity retution of (x)		
			%		
Ge nanoparticles	Sodium-reduced	738 @ 0.2	532 @ 0.2 , after 15 cycles, 72%	/	1
/graphene oxide					
Inverse opal Ge	Electrodeposition from an	1024 @ 0.2 Ca	844 @ 0.2 C after 50 cycles ^a	About 500 mAh	2
film	ionic liquid			g^{-1} @2.25C ^a	
Ge@C/rGO	High energy mechanical	1258.5 @ C/10ª	1074.4 @ 2C, after 600 cycles,	436 @ 20 C	3
hybrids	milling		96.5%		
mesoporous Ge	Zincothermic reduction	1450 @ 0.5 Ca	0.5 C, after 100 cycles, 99.9%	400@ 2 C	4
particles					
Ge@C nanowires	PVD	1332 @ 0.5 Ca	1086 @0.5 C, after 200 cycles,	181 @ 24	5
			91% ^a		
C-/2DOM N	Deve and DC townlate/	00(0 0 0 0	(10) 0 2 C - Rev 100	270 ⊖ 10 C ^a	(
Ge/SDUM-N1	Drop-casting PS template/	990 @ 0.2 Cª	010 0.2	270 @ 10 Ca	0
	electrodeposition of		61.2%		

	3DOM-Ni /reduction of				
	GeO ₂ by NaBH ₄				
honeycomb-like	thermal nitridation of the	1534.7 @ 0.2	1375.40 @0.5, after 200 cy	cles, 483.9 @ 8	This
porous Ge	Mg ₂ Ge in N ₂		93.12%		work

Note: ^a1C is approximately 1600 mA g⁻¹

Table S2 EIS wa	s fitted to th	ne data before	and after cy	/cles
-----------------	----------------	----------------	--------------	-------

Simples	<i>R_S</i> (ohm)	<i>Rct</i> (ohm)	
hp-Ge	4.193	158.7	
Ge	7.603	164.00	
After 3 cycles of hp-Ge electrode	3.446	52.880	
After 3 cycles of pristine Ge electrode	4.234	122.70	

References:

- 1. J. S. Cheng, J. Du, CrystEngComm. 2012, 14, 397.
- 2. X. Liu, J.P. Zhao, J. Hao, B.L. Su, Y. Li, J. Mater. Chem. A, 2013, 1, 15076-15081

3. B. Wang, Z. Wen, J. Jin, X. Hong, S. Zhang, K. Rui J. Power Sources 2017, 342: 521-528

4. J. Kim, N.-S. Choi, H.-K, Song, S. Choi, G. Wang, Small 2017, 13(13): 1603045

5. G. H. Yue, X. Q. Zhang, Y. C. Zhao, Q. S. Xie, X. X. Zhang, D. L. Peng, RSC Adv. 2014, 4, 21450

 K. Liu, Y.-S. Liu, M. M. Harris, J. Li, K.-X. Wang, J.-S. Chen, Chem. Eng. J. 2018, 354: 616-622