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Text S1. Characterization of electrodes

The morphology and elemental composition of the Ti/MnO, electrocatalyst film were
investigated by scanning electron microscopy (SEM, Hitachi, S-4300, Japan) coupled
with energy-dispersive X-ray spectroscopy (EDS, X-Max 20 Aztec energy, Britain). X-
ray diffraction (XRD) patterns were recorded on an X-ray diffractometer (XRD,
Bruker, AXS (D8), Germany) using Cu Ko (A\=1.54 A) as the x-ray source with a 20
range of 10° to 90°, operating at 60 kV and 80 mA. X-ray photoelectron spectroscopy
(XPS) was collected on an electron spectrometer (XPS, VG, Escalab 250 Xi, UK) with
Al Ka radiation (300 W, hv = 1486.6 ¢V) as an X-ray source. The obtained data were
calibrated with standard C 1 s (C-C bond) with a binding energy of 284.8 eV. Fourier
transform infrared spectra (FTIR) were gained by the Fourier transform infrared
spectrophotometer (FTIR, PE, US) in the range of 4000-400 cm!. The absorbance of
LFX solution was recorded with an ultraviolet-visible dual-beam spectrophotometer
(UV-vis, Persee, TU-1900, China) at the maximum absorption wavelength of LFX.
The reacted intermediates were analyzed by liquid chromatography / mass spectrometry
(LC-MS, Agilent, LC1200/MS6310, USA). The standard three-electrode
electrochemical system was employed to investigate the electrochemical properties of
the obtained Ti/MnO, electrocatalyst anode on an electrochemical workstation
(CHI660E, Chenhua, Shanghai), in which the Ti/MnO, electrode, platinum foil and
Ag/AgCl electrode were used as the working electrode, counter electrode and reference
electrode, respectively. Cyclic voltammetry (CV) tests were performed for checking
the degradation process in 0.1 mol-L-! sodium sulfate, a mixed solution of 10 mg-L-!
LFX and 0.1 mol-L! sodium sulfate, and a mixed solution of 10 mg-L-! LFX and 0.1
mol-L-! sodium sulfate and 1.0 g-L-! PMS as an electrolyte solution, respectively, in a
voltage range of -1.0~2.0 V (vs. Ag/AgCl) at a scan rate of 50 mV-s-!. The catalyst
loading on the Ti substrate surface was determined by dividing the total mass of catalyst
deposited on the electrode by the effective electrode area, with units expressed as
g-cm2, It is worth noting that the total mass of catalyst on the electrode was obtained
through pre- and post-deposition weighing of the electrodes.

Text S2. Electrocatalytic degradation of LFX



The LFX degradation experiments were carried out in a 50 mL beaker as reaction
cell with or without existence of PMS and Ti/MnO, anode. For initially comparing and
evaluating the role of MnO, catalyst, PMS and electrocatalysis (EC), five different
systems were designed and adopted to degrade the LFX: i) PMS alone (only existence
of PMS in LFX solution), ii) the conventional MnQO, electrocatalysis system (MnO,-
EC, Ti/MnO, and stainless-steel as anode and cathode in LFX solution respectively),
ii1)) MnO,/PMS system (MnO, granules dispersed into the PMS+LFX solution), 1iv)
EC/PMS system (Ti sheets as the anode and stainless-steel as the cathode in LFX
solution) and v) MnO,-EC/PMS system (Ti/MnO, and stainless-steel as anode and
cathode in PMS+LFX solution respectively). The above whole degradation operating
conditions are 0.1 mol-L! sodium sulfate solution, Na,SO,4 (pH=7) 30 mA-cm? of
applied current density, the electrode plate distance 1 cm, pH value of 7, 0.3g-L-! PMS
and 30 mg-L! LFX. In contrast, the degradation only with the PMS activation was
performed without any electrocatalyst electrode.

The concentrations of the LFX solutions before and after degradation were gained
by measuring the UV-vis spectra of LFX wastewater at the characteristic adsorption
peak with fixed time intervals employing the Ultraviolet-visible spectrophotometer.
For achieving the optimal degradation effect, the initial antibiotic concentration of LFX
(10-40 mg-L-"), PMS concentration (0.06-1.2g-L-"), current density (20-50 mA-cm2),
electrode plate distance (0.5-3 cm), pH value (3-11), and other basic operation
parameters were systematically optimized. It should be noted that the initial pH value
of the simulated aqueous solution was adjusted by 0.1 M H,SO,4 or 0.1 M NaOH.% 7
The reactive oxygen species (ROS) generated in LFX degradation process were
evaluated by using methanol (MeOH) as the scavenger of -:OH and SO,--, and tert-butyl
alcohol (TBA) as the scavenger of -OH.*

The degradation efficiency () was calculated based on the following equation (Eq.

1):
n :Mxloo% :uxm%
CO 0

Where Cj and C, are the concentration of LEX (mg L) at reaction time of 0 and t,

(1)



Ay and A, are the absorbance of LFX at reaction time 0 and t, respectively.>- 1
The kinetic of electrocatalytic degradation of LFX is described by the first-order
kinetic equation (Eq. 2):
C
In—2 =kt 2
C )

¢
Where Cj and C, resemble the physical quantity in Eq. 1. k denotes the apparent rate
constants (min').?
The mineralization of the LFX was evaluated by measuring the removal rate of
Chemical oxygen demand (COD)based on a standard method (Eq. 3).%°

COD, - COD,
COD

n(COD,%) = x100% 3)

0

Where COD, is the COD values at the initial 0 minute and t minute after reaction,
respectively.

By measuring the COD values at different time intervals, the average current

efficiency (ACE) was calculated by the following formula (Eq. 4).

[(COD)t — (COD)Z+AI ]
8IAt

The instantaneous current efficiency (ICE) was calculated from Faraday 's law by

ACE = x100% (4)

measuring the COD values at different time intervals (Eq. 5).

(ACOD),FV

ICE = x100% (5)

By measuring the COD values at different time intervals, the electrochemical energy

consumption (EEC) was estimated by the following formula (Eq. 6).

Ult

C=——"——— (6)
V(ACOD),

Where COD, and COD,.5, are the COD values at time t and t+At (mg L),
respectively. F is Faraday constant (964875 C mol'), V is the volume of electrolyte
(L), constant 8 is the oxygen equivalent mass, I is the current (A), At is the electrolysis
time (h), and U is the average cell potential (V).!

The results and discussion in Fig. S1

In Fig. S1a, the degradation efficiencies of LFX in 120 min were 57.03 %, 63.02



%, 65.56 % and 62.29 %, respectively, indicating that 120g-L-! was the optimal
concentration of the precursor solution. In Fig. S1b, the degradation efficiencies of LFX
in 120 min were 63.35 %, 68.15 %, and 65.37 %, respectively. When the
electrodeposition time of the catalyst is 35 min, the degradation efficiency is the
highest. The deposition time of 35 min increases the number of sites for activating PMS,
but too long electrodeposition time will lead to an increase in catalyst loading, which
will affect the charge transfer and reduce the degradation efficiency. 3 After
calculation, the MnO, loading amounts on the Ti substrate is ~ 0.1293 g-cm for the

optimal MnQO, electrode.
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Fig. S1 The effects of different preparation conditions on the degradation of LFX: (a)

MnSO, concentration, (b) electrodeposition time.
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Fig. S2 UV-vis spectra of LFX at pre-scheduled time intervals after electrocatalytic

degradation by MnO,-EC/PMS system under optimal conditions.
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Fig. S3 Mass spectra graphs of intermediates of the LFX degradation.
Table S1. The identified possible intermediates during LFX degradation from the LC-

MS data.
Name Empirical 3D Molecular Molecular structure Exact m/z
formula structure value
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