Supporting Information

Efficient Synthesis of Bioactive Isoindolinone Derivatives Containing Continuous Quaternary Carbons by Intermolecular OH Transfer

Yingying He, ${ }^{a}$ Hongtao Li, ${ }^{\text {b }}$ Longlong Song, ${ }^{a}$ Lili Chen,,${ }^{\text {b }}$ Shunying Liu*a
a. Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
b. Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional
Chinese Medicine, Shanghai, 201203, China.
*Corresponding authors. syliu@ sist.ecnu.edu.cn

Table of Contents

1. General information 2
2. Optimization of reaction conditions 4
3. Examples of unreactive substrates 6
4. General procedure. 7
5. Single crystal X-ray diffraction data of anti-3e (CDCC NO.: 2308679) 8
6. References 10
7. Characterization data for the products 3 11
8. ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR spectra for products 3 19

1. General information

All ${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) and ${ }^{19} \mathrm{~F}$ NMR (376 MHz) spectra were recorded on Brucker spectrometers in CDCl_{3}. Tetramethylsilane (TMS) served as an internal standard ($\delta=0$) for ${ }^{1} \mathrm{H}$ NMR, and $\mathrm{CD}_{3} \mathrm{OD}, \mathrm{CD}_{3} \mathrm{CN}$ or CDCl_{3} was used as internal standard $(\delta=49.0, \delta=1.3$, 118.3 or $\delta=77.0$) for ${ }^{13} \mathrm{C}$ NMR. Chemical shifts are reported in parts per million as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad). Highresolution mass spectrometry (HRMS) was performed on IonSpec FT-ICR mass spectrometer. Single crystal X-ray diffraction data were recorded on Bruker-AXS SMART APEX II single crystal X-ray diffractometer. Yields for all compounds were combined yields for all isomers unless otherwise indicated.

3-Hydroxyisoindolin-1-ones $\mathbf{3}^{1}$ and diazo compounds ${ }^{2}$ were prepared according to the literature methods. The benzyl alcohols were purchased from Sahn Chemical Technology Ltd and used without further purification. All reactions and manipulations were carried out under air atmosphere in a flamedried or oven-dried flask containing magnetic stir bar. Dichloromethane (DCM), 1,2-dichloroethane (DCE), THF and toluene was distilled over calcium hydride. Solvents for the column chromatography were distilled before use.

Expression and purification of SARS-CoV-2 3CL ${ }^{\text {pro }}$ was performed according to our previous methods. ${ }^{3}$ The plasmids were transformed into BE21 (DE3) cells, E. coli was incubated and grown overnight as starter cultures. Then it was used to expand the culture at a $1: 50$ dilution, and then the cultures were further grown at $220 \mathrm{rpm}, 37^{\circ} \mathrm{C}$ until the OD600 reached $0.6-0.7$. Protease expression was induced by addition of 0.3 mM IPTG, the cultures were incubated at $18{ }^{\circ} \mathrm{C}, 180 \mathrm{rpm}$ for 16 h . Collected cells were sonicated in buffer (25 mM Tris, $150 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM}$ imidazole, 1 mM DTT, pH 7.4) and the lysate was centrifuged at $4^{\circ} \mathrm{C}$ for 30 min at 12000 rpm .2 mL of Ni NTA agarose (GE Healthcare) was added to the supernatant for binding overnight. The miscellaneous proteins were eluted with a low concentration of imidazole, and the SARS-CoV-2 $3 \mathrm{CL}^{\text {pro }}$ was eluted with 300 mM
imidazole. SARS-CoV-2 3 CL $^{\text {pro }}$ was dialyzed through a dialysis membrane with a truncated molecular weight of 10 kDa and stored in solution (25 mM HEPES, $150 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ DTT, pH 7.4) for experiments.

The in vitro SARS-CoV-2 3CL ${ }^{\text {pro }}$ bioactivity was detected by our previous method. ${ }^{3}$ The fiuorogenic peptide Dabcyl-KNSTLQSGLRK-Edans was synthesized (Genscript, Nanjing, China), then resuspended in DMSO at 10 mM and used as a substrate. For the measurement of inhibition ratio, SARS-CoV-2 3CL ${ }^{\text {pro }}$ in the assay buffer ($1 \times$ PBS, 1 mM EDTA, pH 7.4) was added to 96 well plate at a final concentration of $0.12 \mu \mathrm{M}$. Test compounds were prepared in assay buffer and then added to the wells for 30 min at $37^{\circ} \mathrm{C}$. Substrates were added at $20 \mu \mathrm{M}$ to initiate the reaction for 20 min at $37^{\circ} \mathrm{C}$. The fluorescence (Excitation 340 nm , Emission 490 nm) was measured using a Cytation 5 plate reader (BioTek, USA). Data were processed through GraphPad Prism 8.0.

2. Optimization of reaction conditions

Scheme S1. Exploring the effect of varying the equivalent of $\mathbf{H}_{2} \mathrm{O}$ on yield

Table S1. Optimization of reaction conditions ${ }^{a}$

${ }^{a}$ Unless otherwise noted, all reactions were conducted on a 0.1 mmol scale of 1a, 1a:2a $=1: 1.5$ and solvents were of analytical reagent grade. Due to the lower reaction yield when 1a:2a was in a 1:1 ratio after 4 hours, the equivalent of $\mathbf{2 a}$ was increased to 1.5 , allowing $\mathbf{1 a}$ to be fully reacted within 4 hours. ${ }^{b}$ Combined yield of anti- and syn-isomers after isolation. ${ }^{c}$ The ratio of diastereomers (dr) was determined by ${ }^{1} \mathrm{H}$ NMR of the crude products. ${ }^{d}$ The reaction of entry 1 proceeded with ultradry solvent.

3. Examples of unreactive substrates

Scheme S2. Examples of unreactive substrates ${ }^{a}$

3t, 0\%

$3 \mathbf{u}, 0 \%$

$3 \mathbf{v}, 0 \%$

3w, 0\%
${ }^{a}$ Unless otherwise noted, all reactions were conducted in the 2 mL mixture solvent of $\mathbf{1}(0.3 \mathrm{mmol})$ and the catalyst, and $2(0.45 \mathrm{mmol})$ was added dropwise by syringe pump at a flow rate of $1 \mathrm{~mL} / \mathrm{h}$ at $0^{\circ} \mathrm{C}$.

4. General procedure

4.1 General procedure for the synthesis of 3-Aryl-3-hydroxyisoindolin-1-ones ${ }^{1}$

A solution of aryl bromide (3.0 equiv) in THF (50 mL) was taken in an oven-dried RB flask and cooled to $-78{ }^{\circ} \mathrm{C}$. To the solution was added drop wise n-butyllithium (3 equiv, $12 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, 30 mmol), and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 0.5 h . To the solution was added phthalimide (1 equiv, 10 mmol) and the mixture was stirred for further 15 min at $-78^{\circ} \mathrm{C}$ and for 4 h at room temperature. Upon completion (monitored by TLC), the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Then, aqueous solution was extracted with ethyl acetate (3 times). The combined organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The pure product was obtained by washing the crude product with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $(1: 3, \mathrm{v} / \mathrm{v})$ as a solvent.

4.2 General procedure for the preparation of phenyl diazoester ${ }^{2}$

Under nitrogen, at room temperature, a round bottomed flask is charged with the phenylacetic acid (20 mmol , 1 equiv.), dry DCM (0.4 M), oxalyl chloride (1.5 equiv.). Then, DMF (1 or 2 drops) is added. The reaction is allowed to stir at room temperature for 2 h . Then, the reaction temperature is cooled to $0^{\circ} \mathrm{C}$ and an excess of alcohol (x mL) is added. The reaction is allowed to warm up to room temperature and to stir at this temperature overnight. Then, the reaction is quenched with a saturated aqueous solution of NaHCO_{3}, extracted with AcOEt (3 x mL), dried with MgSO_{4} and concentrated under reduced pressure. The solvent wasremoved and the crude product was obtained used directly in the next step. To a mixture of the crude product obtained above (20 mmol) and tosyl azide (p ABSA) (30 mmol) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL}$), 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) (30 mmol) was added slowly. The reaction mixture was stirred at room temperature for overnight. Upon complete consumption of the starting materials, the reaction mixture was quenched with saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, washed by brine. The combined extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (PE/EA, 50:1) to afford the phenyl diazoester.

5. Single crystal X-ray diffraction data of anti-3e (CDCC NO.: 2308679)

Bond precision:	$C-C=0.0097 \mathrm{~A}$	Wavelength=1.54184	
Cell:			
	$\mathrm{a}=8.2517(2)$	$\mathrm{b}=20.7292(7)$	$\mathrm{c}=13.3563(5)$
Temperature:	$\mathrm{alpha}=90$	beta=102.561(3)	gamma=90

	Calculated	Reported
Volume	2229.93(13)	2229.93 (13)
Space group	P 21	P 1211
Hall group	P 2 yb	P 2 yb
Moiety formula	C25 H20 F3 N O5	C25 H20 F3 N O5
Sum formula	C25 H20 F3 N O5	C25 H20 F3 N O5
Mr	471.42	471.42
Dx, g cm-3	1.404	1.404
Z	4	4
$\mathrm{Mu}(\mathrm{mm}-1)$	0.977	0.977
F000	976.0	976.0
F000'	979.67	
h, k, lmax		9,24,15
Nref		6757
Tmin, Tmax	$0.791,0.839$	0.488,1.000
Tmin'	0.717	

Correction method= \# Reported T Limits: Tmin=0.488 Tmax=1.000 AbsCorr = MULTI-SCAN
Data completeness $=\quad$ Theta $(\max)=67.066$

$R($ reflections $)=0.0744(5476) \quad$| wR2 (reflections) $=$ | |
| :--- | :--- |
| | $0.2167(6757)$ |

$S=1.097 \quad$ Npar $=619$

Fig. S1 ORTEP diagram for the compound anti-3e. Thermal ellipsoids are shown at the 50% probability level.

The method for the crystal growth of anti-3e is as follows: anti-3e (15 mg) was stored in a 2.0 mL mixture of DCM/EA ($\mathrm{v} / \mathrm{v}, 4: 1$) solvents in a refrigerator at $4{ }^{\circ} \mathrm{C}$ for five days, and 1.5 mL of an equal proportion of the mixed solution was continually added to the bottle. The bottle continued to be stored in under same conditions for three days.

6. References

[1] (a) T. Nishimura, A. Noishiki, Y. Ebe and T. Hayashi, Hydroxorhodium/Chiral Diene Complexes as Effective Catalysts for the Asymmetric Arylation of 3-Aryl-3-hydroxyisoindolin-1-ones, Angew. Chem. Int. Ed., 2013, 52, 1777-1780; (b) J. Suć, I. Dokli and M. Gredičak, Chiral Brønsted acid-catalysed enantioselective synthesis of isoindolinone-derived N (acyl), S-acetals, Chem. Commun., 2016, 52, 2071-2074; (c) Y. P. Ruan, M. D. Chen, M. Z. He, X. Zhou and P. Q. Huang, A Practical Two-Step Synthesis of 3-Alkyl-2, 3-dihydro-1H-isoindolin-1-ones, Synth. Commun., 2004, 34, 853-861; (d) J. Q. Zhou, W. J. Sheng, J. H. Jia, Q. Ye, J. R. Gao and Y. X. Jia, Chiral phosphoric acid catalyzed asymmetric hydrogenolysis of racemic 3-aryl-3-hydroxyisoindolin-1-ones, Tetrahedron Lett., 2013, 54, 3082-3084; (e) A. Suneja, R. A. Unhale and V. K. Singh, Enantioselective hydrophosphonylation of in situ generated N -acyl ketimines catalyzed by BINOLderived phosphoric acid, Org. Lett., 2017, 19, 476-479; (f) R. A. Unhale, N. Molleti, N. K. Rana, S. Dhanasekaran, S. Bhandary and V. K. Singh, Chiral phosphoric acid catalyzed enantioselective addition of thiols to in situ generated ketimines: Synthesis of N, S-ketals, Tetrahedron Lett., 2017, 58, 145-151.
[2] S. Thurow, A. A. G. Fernandes, Y. Quevedo-Acosta, M. F. de Oliveira, M. G. de Oliveira, I. D. Jurberg, Preparation of Organic Nitrates from Aryldiazoacetates and $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$, Org. Lett., 2019, 21, 6909-6913.
[3] R. Wang, Q. Hu, H. Wang, G. Zhu, M. Wang, Q. Zhang, Y. Zhao, C. Li, Y. Zhang, G. Ge, H. Chen and L. Chen, Identification of Vitamin K3 and its analogues as covalent inhibitors of SARS-CoV-2 3CL ${ }^{\text {pro }}$, Int. J. Biol. Macromol., 2021, 183, 182-192.

7. Characterization data for the products 3

Methyl 2-hydroxy-2-(1-(4-methoxyphenyl)-3-oxoisoindolin-1-yl)-2-phenylacetate (3a). White solid, syn/anti isomer (2:5) ratio.

3a
(syn : anti $=2: 5$)

Mixture of (syn : anti=2:5) isomers of 3a (88% yield): ${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Methanol$\left.d_{4}\right) \delta 8.35(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2.5 \mathrm{H}), 7.84(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4.5 \mathrm{H}), 7.62$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 3.5 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 7.5 \mathrm{H}), 7.20$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 5 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 5.5 \mathrm{H}), 7.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 5 \mathrm{H}), 6.85(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $5 \mathrm{H}), 6.76(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 7.5 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 7.5 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, Methanol- d_{4}) $\delta 174.6,173.6,172.3,172.1,171.5,160.54,160.48,149.7$, $148.8,139.1,133.9,133.1,132.6,132.54,132.48,131.4,130.9,129.6,129.5,129.3,129.2$, $129.1,128.5,128.29,128.26,128.2$, $128.1,128.0,123.8,123.4,114.4,113.7,85.3,84.2,73.8,72.1,55.63$, 55.60, 53.1, 53.0. HRMS(ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 426.1312$, found 426.1305 .

Methyl 2-(4-chlorophenyl)-2-hydroxy-2-(1-(4-methoxyphenyl)-3-oxoisoindolin-1-yl)acetate (3b). White solid, syn/anti isomer (1:1) ratio.

3b
(syn: anti=1:1)

Mixture of (syn : anti=1:1) isomers of 3b (83% yield): ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Acetonitrile$\left.d_{3}\right) \delta 8.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{dd}, J=15.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Acetonitrile- $\left.d_{3}\right) \delta$ 173.6, $172.8,169.8,169.6,160.1,160.0,148.0,147.5,137.3,137.2,134.7,134.6,133.5,132.5$, $132.4,130.8,130.4,130.0,129.8,129.6,129.4,129.3,128.2,127.9,127.64,127.62,123.7,123.2,114.3,113.7$, 84.3, 83.3, 72.3, 70.6, 55.8, 53.9, 53.8. HRMS(ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{ClNNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 460.0922$, found 460.0949 .

Methyl 2-(4-bromophenyl)-2-hydroxy-2-(1-(4-methoxyphenyl)-3-oxoisoindolin-1-yl)acetate (3c). White solid, syn/anti isomer (2:3) ratio.

3c
(syn : anti $=2: 3$)

Mixture of (syn : anti=2:3) isomers of 3c (89% yield): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroformd) $\delta 8.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1.5 \mathrm{H}), 8.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=8.4 \mathrm{~Hz}$, $3.5 \mathrm{H}), 7.63(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1.5 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 3.5 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 7 \mathrm{H}), 7.23(\mathrm{~s}, 3 \mathrm{H})$, $7.18(\mathrm{~s}, 4 \mathrm{H}), 7.03(\mathrm{~s}, 1.5 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 3 \mathrm{H}), 4.34(\mathrm{~s}$, $1.5 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 4.5 \mathrm{H}), 3.57(\mathrm{~s}, 4.5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, Chloroform-d) $\delta 172.7,172.3,169.8,169.4,159.3,159.2,146.7,146.3,135.7$, $135.5,132.3,131.9,131.7,131.3,131.0,130.7,130.5,129.2,129.1,129.0,128.8,128.7$,
128.5, 128.3, 126.3, 126.0, 123.8, 123.3, 123.0, 113.7, 113.1, 83.4, 82.0, 70.6, 69.7, 55.2, 53.8. HRMS(ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BrNNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 504.0417$, found 504.0411.

Methyl 2-(3-bromophenyl)-2-hydroxy-2-(1-(4-methoxyphenyl)-3-oxoisoindolin-1-yl)acetate (3d). White solid, syn/anti isomer (1:1) ratio.

anti-3d (38\% yield): ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 8.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92$ $(\mathrm{s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.01(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}\right.$, Acetonitrile- d_{3}) $\delta 173.4,169.7,168.7,160.1,147.9,140.9,132.43,132.38$, $132.0,131.0,129.8,129.5,129.3,127.7,126.8,123.2,121.7,114.4,84.3,70.6,55.8,54.0$.
HRMS(ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BrNNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 504.0417$, found 504.0423.
syn-3d (38% yield): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 8.24$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.64 (dd, $J=16.4,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, 3.75 (s, 3H), 3.57 (s, 3H). ${ }^{13} \mathbf{C}$ NMR (100 MHz , Acetonitrile- d_{3}) δ 172.2, 169.2, 159.7, $147.0,140.4,138.4,133.1,132.1,131.7,130.9,130.4,130.0,129.8,129.5,127.3,126.7$, $123.3,121.7,82.9,72.1,55.5,53.5$. $\mathbf{H R M S}(E S I)$ Calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BrNNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}$ 504.0417, found 504.0438.

Methyl 2-hydroxy-2-(1-(4-methoxyphenyl)-3-oxoisoindolin-1-yl)-2-(3-(trifluoromethyl)phenyl)acetate (3e). White solid, syn/anti isomer (1:3) ratio.

anti-3e (38% yield): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.85 $-7.75(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform-d) $\delta 172.6,169.8,159.5,146.5,137.5,131.9,131.3,130.5,130.04$, 129.96, 129.7, 128.9, 128.4, 127.8, 126.4, $125.36(\mathrm{q}, J=3.9 \mathrm{~Hz}), 124.17(\mathrm{q}, J=3.6 \mathrm{~Hz})$, 123.3, 113.9, 83.5, 69.9, 55.4, 54.0. ${ }^{19}$ F NMR (376 MHz , Chloroform-d) $\delta-62.84$. HRMS(ESI) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 494.1186$, found 494.1198.

3e
(syn : anti=1:1)
Mixture of (syn : anti=1:1) isomers of $\mathbf{3 e}\left(38 \%\right.$ yield): ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroformd) $\delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=7.5,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.83-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.64(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.27$ $(\mathrm{m}, 6 \mathrm{H}), 7.17(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.46$ $(\mathrm{s}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 172.7,172.2,170.1,159.43,159.40,146.5,146.1,137.64,137.60$, $132.5,131.9,131.8,131.5,130.5,130.24,130.17,130.1,129.92,129.85,129.6,129.3$, $129.2,128.80,128.75,128.5,128.3,127.7,126.5,126.2,125.45(\mathrm{q}, J=3.6 \mathrm{~Hz}), 125.30,125.21(\mathrm{q}, J=3.7 \mathrm{~Hz})$, $125.81(\mathrm{q}, ~ J=3.6 \mathrm{~Hz}), 124.22(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.9,123.2,122.6,122.5,113.8,113.3,83.4,82.4,71.5,70.2$,
55.4, 55.3, 54.0, 53.9. ${ }^{19}$ F NMR (376 MHz , Chloroform- d) $\delta-62.70$, -62.82. HRMS(ESI) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 494.1186$, found 494.1204.

Methyl 2-(3-chloro-4-fluorophenyl)-2-hydroxy-2-(1-(4-methoxyphenyl)-3-oxoisoindolin-1-yl)acetate (3f). White solid, syn/anti isomer (1:1) ratio.

anti-3f
anti-3f (38.5\% yield): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 8.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.88(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32$ $(\mathrm{dd}, J=7.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Acetonitrile- $\left.d_{3}\right) \delta 173.2$, $169.7,160.2,159.6(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 157.1,147.7,135.9(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 132.5(\mathrm{~d}, J=8.0$ $\mathrm{Hz}), 132.1,130.5,129.6,129.3,128.5(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 127.6,123.3,119.9(\mathrm{~d}, J=17.7 \mathrm{~Hz})$, $116.0(\mathrm{~d}, ~ J=21.0 \mathrm{~Hz}), 114.4,83.9,70.7,55.8,54.1 .{ }^{19}$ F NMR $\left(376 \mathrm{MHz}\right.$, Acetonitrile- $\left.d_{3}\right) \delta-118.10$. HRMS(ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClFNNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 478.0828$, found 478.0849 .
syn-3f (38.5% yield): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=16.2,7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=20.5,8.7 \mathrm{~Hz}, 3 \mathrm{H}), 4.22(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, Chloroform- d) $\delta 172.6,159.3(\mathrm{~d}, ~ J=23.6 \mathrm{~Hz}$), $156.7,146.5(\mathrm{~d}, J=2.5$ $\mathrm{Hz}), 133.6(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 131.9,130.5(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 129.8,128.9,128.5,127.0,126.9$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}), 126.5,123.4,120.3(\mathrm{~d}, J=18.5 \mathrm{~Hz}), 115.5,115.3,113.9,83.0,70.1,55.4$, 54.1. ${ }^{19}$ F NMR (376 MHz , Chloroform- d) δ-115.41. HRMS(ESI) Calcd. For $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClFNNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 478.0828$, found 478.0849 .

Methyl 2-(4-chloro-3-fluorophenyl)-2-hydroxy-2-(1-(4-methoxyphenyl)-3-oxoisoindolin-1-yl)acetate (3g). White solid, syn/anti isomer (1:1) ratio.

$\mathbf{3 g}$
(syn : anti = 1:1)

Mixture of (syn : anti = 1:1) isomers of $\mathbf{3 g}\left(78 \%\right.$ yield): ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Methanol$\left.d_{4}\right) \delta 8.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ $(\mathrm{d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 2 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, Methanol- d_{4}) $\delta 173.7,172.8,172.3,172.0,160.6 \mathrm{z} 8,160.65,159.5,159.3,157.1$, 156.9, 149.0, 148.2, 140.8, 140.74, 140.70, 140.6, 133.7, 132.83, 132.75, 132.43, 132.41, $130.8,130.7,130.3,130.1,130.0,129.7,129.5,128.4,128.2,125.4,125.3,125.02,125.0,124.0,123.6,121.7$, $121.6,121.5,121.4,117.3,117.0,116.9,116.9,116.6,114.8,114.7,114.5,113.9,84.5,83.5,73.8,72.0,55.6$, $53.5,53.3 .{ }^{19}$ F NMR (376 MHz , Methanol- d_{4}) $\delta-117.78(\mathrm{dd}, J=10.4,7.2 \mathrm{~Hz}$), $-118.16(\mathrm{~d}, J=11.2 \mathrm{~Hz})$, $118.43(\mathrm{dd}, J=11.1,7.3 \mathrm{~Hz})$. HRMS(ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClFNNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 478.0828$, found 478.0832 .

Methyl 2-hydroxy-2-(1-(4-methoxyphenyl)-3-oxoisoindolin-1-yl)-2-(m-tolyl)acetate (3h). White solid, syn/anti isomer (10:31) ratio.

3h
(syn : anti = 10:31)

Mixture of (syn : anti $=10: 31$) isomers of $\mathbf{3 h}\left(84 \%\right.$ yield): ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3.1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $6.2 \mathrm{H}), 7.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 4.1 \mathrm{H}), 7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4.1 \mathrm{H}), 7.48$ $-7.43(\mathrm{~m}, 4.1 \mathrm{H}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3.1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.03-7.00(\mathrm{~m}, 3.1 \mathrm{H}), 6.95-6.94(\mathrm{~m}, 9.3 \mathrm{H}), 6.84(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 6.2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 4.29(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3.1 \mathrm{H}), 3.79-3.74(\mathrm{~m}, 21.6 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$, $2.10(\mathrm{~s}, 9.3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform-d) $\delta 173.1,172.9,169.9,169.5,159.23$, $159.16,147.3,146.8,137.7,137.1,136.7,136.6,132.5,131.8,131.6,131.53,131.49,129.6,129.5,129.4,129.3$, $129.1,128.5,128.3,128.2,128.0,127.9,127.5,127.4,126.4,126.1,124.3,123.74,123.70,123.1,113.8,112.9$, 84.1, 82.3, 70.5, 69.9, 55.3, 53.7, 53.6, 21.7, 21.5. HRMS(ESI) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 440.1468$, found 440.1475 .

Methyl 2-hydroxy-2-(1-(4-methoxyphenyl)-3-oxoisoindolin-1-yl)-2-(naphthalen-2-yl)acetate (3i). White solid, syn/anti isomer (1:5) ratio.

anti-3i
anti-3i (73\% yield): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.13$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.84 $-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.43-$ $7.32(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, Chloroform-d) $\delta 173.1,169.8,159.3,150.6,147.2,134.1$, $133.0,132.3,131.7,131.42,131.39,128.62,128.59,128.4,127.5,127.1,126.7,126.4$, 126.2, 124.0, 123.3, 113.8, 84.2, 70.0, 55.4, 53.7. HRMS(ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NNaO}_{5}$ $(\mathrm{M}+\mathrm{Na})^{+} 476.1468$, found 476.1462 .

Benzyl 2-hydroxy-2-(1-(4-methoxyphenyl)-3-oxoisoindolin-1-yl)-2-phenylacetate (3j). White solid, syn/anti isomer (1:1) ratio.

anti-3j
anti-3j (41% yield): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.74 $(\mathrm{dd}, J=9.6,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.28(\mathrm{~m}$, $4 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{dd}, J=9.6$, $2.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) δ 172.5, 169.7, 159.3, 147.2, 136.7, 134.0, 131.7, $131.4,131.3,129.2,129.1,128.9,128.8,128.6,128.3,127.5,126.7,126.4,123.1,113.8$, 84.0, 69.7, 69.0, 55.3. HRMS(ESI) Calcd. for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 502.1625$, found 502.1607.

Benzyl 2-hydroxy-2-(1-(4-methoxyphenyl)-3-oxoisoindolin-1-yl)-2-phenylacetate (3j). White solid, syn/anti isomer (1:1) ratio.

syn-3j (41% yield): ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.11$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.58 $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J$ $=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 5.04(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.29(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform-d) $\delta 172.2,169.3,159.2$, $146.5,136.9,133.9,132.4,131.7,129.43,129.39,129.3,129.04,129.01,128.91,128.85$, $128.0,127.2,126.1,123.8,113.0,82.2,70.5,69.2,55.3$. HRMS(ESI) Calcd. for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}$ 502.1625 , found 502.1617 .

Methyl 2-(6-chloropyridin-3-yl)-2-hydroxy-2-(1-(4-methoxy-3-methylphenyl)-3-oxoisoindolin-1-

 $\mathbf{y l}$)acetate ($\mathbf{3 k}$). White solid, syn/anti isomer (1:1) ratio.Mixture of (syn : anti=1:1) isomers of $\mathbf{3 k}$ (73% yield): ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform-

3k
(syn : anti = 1:1) d) $\delta 9.00(\mathrm{~s}, 1 \mathrm{H}), 8.44-8.37(\mathrm{~m}, 2 \mathrm{H}), 8.28-8.17(\mathrm{~m}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ $-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{dd}, J=12.8,6.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.60-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(100 \mathrm{MHz}$, $139.9,138.3,137.6,132.5,132.1,132.0,131.6,131.5,131.3,130.3,129.6,129.4,129.3,129.1,127.94,127.89$, $126.62,126.59,126.5,126.3,126.1,125.8,124.9,123.9,123.5,123.0,122.7,109.7,109.3,82.1,81.5,72.0$, $70.4,55.4,54.3,54.0,16.7,16.6$. HRMS(ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 475.1031$, found 475.1059 .

3-(1-hydroxy-2-oxo-2-phenylethyl)-3-(4-methoxyphenyl)isoindolin-1-one (31). White solid, syn/anti isomer (1:1) ratio.

anti-31
anti-31 (43.5% yield): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 7.94$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.71 (dd, $J=15.3,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 6 \mathrm{H}), 6.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}\right.$, Acetonitrile- $\left.d_{3}\right) \delta 200.1,170.7,160.0$, $150.3,136.9,136.8,134.8,133.1,133.0,129.8,129.6,129.4,127.5,124.11,124.06,115.0$, 74.1, 69.8, 55.8. HRMS(ESI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$396.1206, found 396.1223.

3-(1-hydroxy-2-oxo-2-phenylethyl)-3-(4-methoxyphenyl)isoindolin-1-one (31). White solid, syn/anti isomer (1:1) ratio.

syn-31
syn-31 (43.5% yield): ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 7.59$ (d, $J=8.7 \mathrm{~Hz}, 3 \mathrm{H}$), 7.53 $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.17$ $-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(100 \mathrm{MHz}$, Acetonitrile- d_{3}) $\delta 201.5,170.1,160.1,148.3,137.7,133.7,133.3,132.7,131.5,129.4$, 129.1, 129.0, 128.1, 125.7, 123.8, 114.8, 77.2, 70.4, 55.9. HRMS(ESI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 396.1206$, found 396.1227.

Methyl 2-(4-bromophenyl)-2-hydroxy-2-(1-(4-methoxy-3-methylphenyl)-3-oxoisoindolin-1-yl)acetate

 (3n). White solid, syn/anti isomer (1:1) ratio.anti-3n (39\% yield): ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.11$ (d, $J=7.8$

anti-3n

syn-3n $\mathrm{Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform-d) $\delta 173.0,170.2,157.6$, $146.9,135.7,131.7,130.55,130.51,130.1,129.6,128.69,128.65,126.52,126.48,125.7$, 123.3, 123.0, 109.6, 83.3, 70.0, 55.4, 53.9, 16.7. HRMS(ESI) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{BrNNaO}_{5}$ $(\mathrm{M}+\mathrm{Na})^{+} 518.0574$, found 518.0587 .
$\operatorname{syn}-3 n\left(39 \%\right.$ yield): white solid. ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.13$ ($\mathrm{d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ (s, 4H), $7.10-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 172.5,169.4,157.6$, $146.4,135.8,132.3,131.9,131.0,130.3,129.22,129.17,128.4,126.5,126.2,126.0,123.9$, 123.4, 109.1, 82.2, 70.7, 55.4, 53.9, 16.6. HRMS(ESI) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{BrNNaO}_{5}(\mathrm{M}+$ $\mathrm{Na})^{+} 518.0574$, found 518.0584.

Methyl 2-(4-bromophenyl)-2-hydroxy-2-(3-oxo-1-(4-phenoxyphenyl)isoindolin-1-yl)acetate (30). White solid, syn/anti isomer (1:1) ratio.

anti-3o
anti-3o (33.5\% yield): ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.27$ (d, $J=21.9 \mathrm{~Hz}, 1 \mathrm{H}$), $8.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.31(\mathrm{~m}$, $3 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=19.3,8.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.18$ $(\mathrm{d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform-d) $\delta 172.8,170.1$, $157.5,156.6,146.6,135.5,133.3,131.8,131.5,130.6,130.0,128.9,128.8,128.6,126.5$, 123.9, 123.4, 123.2, 119.6, 118.1, 83.4, 70.0, 54.0. HRMS(ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{BrNNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 566.0574$, found 566.0535 .

Methyl 2-(4-bromophenyl)-2-hydroxy-2-(3-oxo-1-(4-phenoxyphenyl)isoindolin-1-yl)acetate (30). White solid, syn/anti isomer (1:1) ratio.

syn-30
syn-3o (33.5% yield): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.15$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.27$ $(\mathrm{m}, 8 \mathrm{H}), 7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.36(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 172.4,169.4$, $157.4,156.6,146.2,135.7,132.4,132.1,131.4,131.2,130.0,129.6,129.4,129.1,126.1$, 124.0, 123.9, 123.5, 119.5, 117.6, 82.1, 70.6, 54.0. HRMS(ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{BrNNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 566.0574$, found 566.0545.

Methyl 2-(benzyloxy)-2-(4-bromophenyl)-2-(1-(4-(dimethylamino)phenyl)-3-oxoisoindolin-1-yl)acetate (3p). White solid, syn/anti isomer (2:3) ratio.

3p
(syn : anti=2:3)

Mixture of (syn : anti=2:3) isomers of $\mathbf{3 p}\left(76 \%\right.$ yield): ${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroformd) $\delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1.5 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1.5 \mathrm{H}), 7.66(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1.5 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{dd}, J=9.0,2.9 \mathrm{~Hz}, 5 \mathrm{H}), 6.65(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $3 \mathrm{H}), 4.32(\mathrm{~s}, 1.5 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 4.5 \mathrm{H}), 2.93(\mathrm{~s}, 6 \mathrm{H}), 2.91(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13}$ C NMR (100 MHz , Chloroform- d) $\delta 172.9$, 172.6, 150.1, 150.0, 147.1, 146.6, 136.0, $135.7,132.5,131.8,131.6,131.4,130.9,130.5,129.3,129.0,128.8,128.63,128.55,128.0$, $126.4,126.1,125.6,123.9,123.4,123.2,123.0,112.0,111.4,83.4,82.3,77.5,69.9,53.9$, 53.8, 40.40, 40.37. HRMS(ESI) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 495.0914$, found 495.0905 .

Methyl 2-(4-bromophenyl)-2-(1-(4-(dimethylamino)phenyl)-3-oxoisoindolin-1-yl)-2-hydroxyacetate (3q). White solid, syn/anti isomer (10:13) ratio.

Methyl 2-(benzyloxy)-2-(4-bromophenyl)-2-(1-(4-methoxy-3-methylphenyl)-3-oxoisoindolin-1-yl)acetate (3r). White solid, syn/anti isomer (1:1) ratio.

anti-3r
found 608.1026.

syn-3r

anti-3r (43\% yield): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.10$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.67 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 7 \mathrm{H}), 7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.20(\mathrm{dd}, J=18.0,8.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.64(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26$ $(\mathrm{d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, Chloroform- d) $\delta 169.8,169.6,157.5,146.9,137.8,132.5,131.8,131.48,131.45,130.9$, $130.5,128.7,128.6,128.5,127.8,127.6,127.1,126.7,125.5,123.5,123.3,108.6,89.7$, 71.6, 69.0, 55.3, 52.1, 16.3. HRMS(ESI) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{BrNNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}$608.1043,
syn-3r (43% yield): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.79$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68 $(\mathrm{d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 7 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 3 \mathrm{H})$, $6.72(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.91(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $3.62(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 171.8,169.4,157.6$, $147.2,138.1,132.4,131.9,131.8,131.3,131.1,129.4,129.3,128.8,128.7,128.3,128.1$, 126.9, 126.4, 125.1, 123.6, 123.4, 109.5, 91.9, 71.0, 70.4, 55.4, 52.5, 16.6. HRMS(ESI) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{BrNNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 608.1043$, found 608.1037.

Methyl 2-(benzyloxy)-2-(4-bromophenyl)-2-(1-(4-(dimethylamino)phenyl)-3-oxoisoindolin-1-yl)acetate (3s). White solid, syn/anti isomer (1:1) ratio.

anti-3s

syn-3s
anti-3s (41% yield): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.04$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.65 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.30(\mathrm{~m}, 10 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, 1H), $3.42(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform-d) $\delta 170.0,169.5,150.7$, $150.1,138.0,132.9,131.9,131.4,131.0,130.7,129.6,128.7,128.6,127.9,127.7,126.8$, $124.4,123.5,123.4,111.3,90.0,71.6,69.2,52.3,40.4$. HRMS(ESI) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{BrN}_{2} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 607.1203$, found 607.1212.
syn-3s (41% yield): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.82$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.74 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.33(\mathrm{~m}, 7 \mathrm{H}), 7.22(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 3 \mathrm{H})$, $6.75(\mathrm{~s}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.63(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform-d) $\delta 171.8,169.4,150.1$, $147.5,138.2$, 132.7, 131.9, 131.7, 131.0, 129.5, 128.63, 128.60, 128.3, 128.0, 127.6, 126.94, 126.91, 123.5, 123.3, 112.0, 92.1, 71.0, 70.2, 52.5, 40.4. HRMS(ESI) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 585.1383$, found 585.1362.

8. ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR spectra for products 3

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectra for 3a

3a
(syn : anti = 2:5)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) spectra for 3b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3 c

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) spectra for anti-3d

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) spectra for syn-3d

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{19} \mathrm{~F}$ NMR (376 MHz , CDCl_{3}) spectra for anti-3e

anti-3e

\qquad
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{19} \mathrm{~F}$ NMR (376 MHz , CDCl_{3}) spectra for 3 e

(syn : anti $=1: 1$)

(syn : anti $=1: 1$)

${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.\mathrm{D}_{3} \mathrm{CN}\right),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) and ${ }^{19} \mathrm{~F}$ NMR (376 MHz , $\mathrm{CD}_{3} \mathrm{CN}$) spectra for anti-3f

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{19} \mathrm{~F}$ NMR (376 MHz , CDCl_{3}) spectra for $\operatorname{syn}-3 \mathrm{f}$

 $\dot{4}$
$\stackrel{6}{5}$
i

syn-3f
\qquad
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) and ${ }^{19} \mathrm{~F}$ NMR (376 MHz , $\mathrm{CD}_{3} \mathrm{OD}$) spectra for 3 g

3 g
(syn : anti=1:1)

3 g
(syn : anti $=1: 1$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3 h

3h
(syn : anti = 10:31)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for anti-3i

anti-3i

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{3 k}$

3k
(syn : anti = 1:1)

3k
(syn : anti=1:1)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) and ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ spectra for anti-3I

anti-3I

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for anti-3n

[^0]$\stackrel{\text { i }}{i}$

anti-3n

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for anti-3o

anti-3o

- 7	$\pm \bullet$	
No	is	
		$\leftarrow \leftarrow \leftarrow$
1	\/	\square

syn-3o

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3p
No

3p
(syn : anti $=2: 3$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{3 q}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for anti-3r

anti-3r

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathrm{syn}-3 \mathrm{r}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $\mathrm{syn}-3 \mathrm{~s}$

[^0]: 「~No

