Supporting Information

Abundant heterointerfaces in CoS₂/MoS₂ nanosheet array electrocatalysts for enhanced oxygen evolution reaction

Zhaojin Li[†], Qian Ma[†], Shaofei Zhang[†], Di Zhang[†], Huan Wang[†], Qiujun Wang[†], Huilan Sun[†], Bo Wang[†]*

[†] Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Hebei 050018 (China)
* Author to whom correspondence should be addressed: School of Materials Science and Engineering, Hebei University of Science and Technology, Hebei 050018 (China)
E-mail addresses: wangbo1996@gmail.com

Fig. S1 SEM images of CoS_2/MoS_2 with different Co/Mo ratios: (a) CoS_2/MoS_2 -1:2; (b) CoS_2/MoS_2 -1:1; (c) CoS_2/MoS_2 -2:1

Fig. S2 HRTEM images of the CoS_2/MoS_2 -1:1 nanosheets

Fig. S3 SEM images of CoS₂/MoS₂-1:1 obtained at different hydrothermal time: (a) 2 h; (b) 4 h; (c) 6 h

Fig. S4 SEM image of Co/Mo oxide with Co/Mo ratio of 1:1

Fig. S5 TEM images of Co/Mo oxide with Co/Mo ratio of 1:1

Fig. S6 HRTEM and SAED images of Co/Mo oxide with Co/Mo ratio of 1:1

Fig. S7 Elemental mappings of Co/Mo oxide with Co/Mo ratio of 1:1

Fig. S8 Contact angle testing: (a) CoS_2/MoS_2 -1:1; (b) Co/Mo oxide

Fig. S9 LSV curves of CoS_2/MoS_2 -1:1 with different loads

Fig. S10 CVs at different scan rates of in a potential window where no Faradaic processes occur (1.16-1.26 V vs. RHE) for: (a) CoS₂/MoS₂-1:2, (b) CoS₂/MoS₂-1:1, (c) CoS₂/MoS₂-2:1, (d) Co/Mo oxide

Fig. S11 (a) LSV curves, (b) Nyquist plots of CoS_2/MoS_2 -1:1 before and after stability test

Fig. S12 TEM images of the CoS_2/MoS_2 -1:1 sample after reaction

Fig. S13 FTIR spectra of CoS_2/MoS_2 -1:1 after reaction

Fig. S14 (a) Nitrogen adsorption-desorption isotherm and (b) pore distribution curves of CoS_2/MoS_2 -1:2; (c) Nitrogen adsorption-desorption isotherm and (d) pore distribution curves of CoS_2/MoS_2 -1:1; (e) Nitrogen adsorption-desorption isotherm and (f) pore distribution curves of CoS_2/MoS_2 -1:1; (e) Nitrogen

Fig. S15 (a) Nitrogen adsorption-desorption isotherm and (b) pore distribution curves of Co/Mo oxide with Co/Mo ratio of 1:1

 $\begin{tabular}{|c|c|c|c|c|} \hline Sample & Mass activity(A \cdot g^{-1}) \\ \hline Co/Mo oxide & 4.09 \\ \hline CoS_2/MoS_2-1:2 & 14.49 \\ \hline CoS_2/MoS_2-1:1 & 31.50 \\ \hline CoS_2/MoS_2-2:1 & 22.16 \\ \hline \end{tabular}$

Table S1 Mass activity of different samples under certain voltage

Materials	Electrolyte	Overpotential /mV	Tafel slope /mV·dec ⁻¹	Ref.
MoS ₂ /NiS	1.0 M KOH	350	108	[S1]
CoS_2/MoS_2	1.0 M KOH	332	125	[S2]
CoS_2 -5	1.0 M KOH	290	65.6	[S3]
$CoS_2@MoS_2$	1.0 M KOH	332	37.5	[S4]
CoS2-MoS2 MSHSs	1.0 M KOH	288	62.1	[85]
CoS NF/CC	1.0 M KOH	310	73.4	[S6]
Fe-CoS ₂ /CC	1.0 M KOH	304	128	[S7]
MoS ₂ /CC	1.0 M KOH	503	131	[S8]
$meso-Fe-MoS_2/CoMo_2S_4$	1.0 M KOH	290	65	[S9]
P-CoS	1.0 M KOH	340	73	[S10]
CoS_2/MoS_2	1.0 M KOH	285	105.32	This work

Table S2 Comparison of Tafel slope and overpotential (10 mA·cm⁻²) with the electrocatalysts in literature

References:

- 1 Q. Qin, L. Chen, T. Wei and X. Liu, *Small*, 2019, **15**, 1–13.
- 2 P. Borthakur, P. K. Boruah, M. R. Das, M. M. Ibrahim, T. Altalhi, H. S. El-sheshtawy, S. Szunerits, R. Boukherroub, M. A. Amin, *ACS Appl. Energy Mater.*, 2021, **4**, 1269-1285.
- 3 Y. Zhang, G. Zheng, A. Li, X. Zhu, J. Jiang, Q. Zhang, L. Deng, X. Gao and F. Ouyang, *Inorg. Chem.*, 2022, **61**, 7568-7578.
- 4 X. Liu, Z. Yin, M. Cui, L. Gao, A. Liu, W. N. Su, S. Chen, T. Ma and Y. Li, J. *Colloid Interface Sci.*, 2022, **610**, 653–662.
- 5 V. Ganesan and J. Kim, Int. J. Hydrogen Energy, 2020, 45, 13290–13299.
- 6 Y. Li, X. Fu, W. Zhu, J. Gong, J. Sun, D. Zhang and J. Wang, *Inorg. Chem. Front.*, 2019, **6**, 2090–2095.
- 7 W. Kong, X. Luan, H. Du, L. Xia and F. Qu, Chem. Commun., 2019, 55, 2469–2472.
- 8 Q. Sun, Y. Tong, P. Chen, B. Zhou and X. Dong, ACS Sustain. Chem. Eng., 2021, 9, 4206–4212.
- Y. Guo, J. Tang, J. Henzie, B. Jiang, W. Xia, T. Chen, Y. Bando, Y. M. Kang, M. S. A. Hossain,
 Y. Sugahara and Y. Yamauchi, ACS Nano, 2020, 14, 4141–4152.
- 10 J. Jiang, J. Xu, W. Wang, L. Zhang and G. Xu, Chem. A Eur. J., 2020, 26, 14903–14911.