Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Design and synthesis Few-layer Molybdenum Oxide Selenide Encapsulated in 3D

interconnected nitrogen-doped carbon Anode Toward High-Performance sodium

storage

Yonghong Qin^{1, 2}, Shahriman Zainal Abidin^{1*}, Azhari Bin Md Hashim¹, Oskar Hasdinor Hassan¹, and Xiaojun Zhao^{3*}

Fig. S1 SEM images of (a) MoO₃-NC and (b) MoSe₂-NC.

Fig. S2 SEM images of (a) MoO_x -MoSe₂ and (b) NC.

Fig. S3 TGA curves of MoO₃-MoSe₂-NC.

Fig. S4 (a) N_2 adsorption-desorption isotherms and (b) the pore-size distribution plot of the TGA curves of MoO₃-MoSe₂-NC.

Fig. S5 XPS survey of MoO₃-MoSe₂-NC.

Fig. S6 Galvanostatic discharge/charge curves of (a) MoSe₂-NC and (b) MoO₃-NC, respectively.

Fig. S7 Cycle performance of MoO_x -MoSe₂ and NC at 0.1 A g⁻¹.

Fig. S8 (a, b) SEM images of MoO₃-MoSe₂-NC sample after 100 cycles for SIBs.

Table S1 Performance comparison between MoO_3 -MoSe₂-NC anode and the reported

Samples	Cycle performance (mAh g ⁻¹)/number	Current density (A g ⁻¹)	Ref.
MoO ₃ -MoSe ₂ -NC	551/150	0.1	This work
	368/600	1	
MoO ₂ /MoSe ₂ -	404 (rate capability)	0.1	Energy Storage Materials, 2018,
graphene	340/300	0.5	12, 241-251
MoSe ₂ nanoparticles	374/100	0.5	J. Alloys. Compds. 2022, 922,
			166306
MoSe2@C HNS	458/200	0.5	Inorg. Chem. Front., 2020,7,
			1691-1698
MoSe2@NPC/rGO	340/500	0.5	J. Power Sources, 2020, 476,
			228660
TiO2@MoO2-C	210/500	1	Adv. Energy Mater. 2017, 7(15),
			1602880
MoO2/MoSe2@NPC	382/200	0.1	ACS Appl. Mater. Interfaces 2022,
			14, 32, 36592–36601

anode materials for SIBs

Fig. S9 Linear relation between I_p and $v^{1/2}$ of the (a) MoO₃-MoSe₂-NC and (b) MoSe₂-NC anodes for SIBs, respectively.

Fig. S10 Separation of the capacitive and diffusion currents at a scan rate of 0.6 mV s⁻¹ of the (a) MoO₃-MoSe₂-NC and (b) MoSe₂-NC anodes for SIBs, respectively.

Fig. S11 Nyquist plots of MoO₃-MoSe₂-NC, MoSe₂-NC, and MoO₃-NC anodes before and after cycling.