Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information for:

An All-rounder Aminoguanidine based Ligand, Its Unusual Anionic Zinc(II) and Cadmium(II) Coordination Complexes and Their Biological Implications

Ansa Santu^a, K. K. Mohammed Hashim^a, E. Manoj^{a*}

^aDepartment of Applied Chemistry, CUSAT, Kochi, Kerala 682 022, India *<u>manoje@cusat.ac.in</u>

Sl. No.	Contents	Page no.			
1	Figure S1. Mass spectrum of [ZnCl ₂ (H ₄ Brsal-dag)]H ₆ Brsal-	rsal-			
1	dag.DMF. $H_2O(1)$ with experimental and calculated isotopic patterns.				
2	Figure S2. Mass spectrum of [CdCl ₂ (H ₄ Brsal-dag)]H ₆ Brsal-	S/			
	dag.DMF.H ₂ O (2) with experimental and calculated isotopic patterns.				
2	Figure S3. Experimental (a) and theoretical (b) IR spectra of the	\$5			
5	complex 1.				
4	Figure S4. Experimental (a) and theoretical (b) IR spectra of the	erimental (a) and theoretical (b) IR spectra of the			
-	complex 2.				
5	Figure S5. Experimental (a) and theoretical (b) Far IR spectra of the	\$5			
5	complex 1.				
6	Figure S6. Experimental (a) and theoretical (b) Far IR spectra of the	\$6			
0	complex 2.				
7	Figure S7. UV-vis spectra of the ligand, complex 1 and complex 2.	S6			
	Figure S8. Unit cell packing diagrams of a) complex 1 and b)				
8	complex 2 along 'a' axis, showing relevant hydrogen bonding	S 6			
	interactions (blue dotted lines).				
	Figure S9. 2D Fingerprint plots showing the percentages of contacts				
9	contributed to the total Hirshfeld surface area of the	S7			
	complex 1(below) and the complex 2 (above).				
10	Figure S10. Relative contributions of various intermolecular contacts	\$7			
10	to the Hirshfeld surface area in a) complex 1 & b) complex 2.				
11	Figure S11. MEP plots for (a) ligand, (b) complex 1 and (c) complex	S7			
	2.	57			
12	Figure S12. PXRD (left) and simulated PXRD pattern from SC-XRD	S 8			
12	(right) of (a) complex 1 and (b) complex 2.				
13	Figure S13. Zone of inhibition of (a) S. aureus (b) E. coli against	58			
	ligand, complex 1 and complex 2.				
14	Figure S14 . Binding mode of $[ZnCl_2(H_4Brsal-dag)]^-$ and its focused	<u> </u>			
	view of interactions with 1BNA.				
15	Figure S15 . Binding mode of [CdCl ₂ (H ₄ Brsal-dag)] ⁻ and its focused	S9			

	view of interactions with 1BNA.	
16	Figure S16 . Binding mode of $[ZnCl_2(H_4Brsal-dag)]^-$ and its focused view of interactions with DHFR from <i>S. aureus</i> .	S10
17	Figure S17 . 2D representation of (a) [ZnCl ₂ (H ₄ Brsal-dag)] ⁻ and (b) [CdCl ₂ (H ₄ Brsal-dag)] ⁻ at the active site residues of DHFR from <i>S. aureus</i> .	S10
18	Figure S18 . 2D representation of $[CdCl_2(H_4Brsal-dag)]^-$ with the active site residues of DHFR from <i>E. coli</i> .	S10
19	Table S1. Crystal refinement parameters of the complexes $[ZnCl_2(H_4Brsal-dag)]H_6Brsal-dag \cdot DMF \cdot H_2O$ (1) and $[CdCl_2(H_4Brsal-dag)]H_6Brsal-dag \cdot DMF \cdot H_2O$ (2).	S11
20	Table S2 . The bond lengths (Å) and bond angles (°) of the complex $[CdCl_2(H_4Brsal-dag)]H_6Brsal-dag.DMF.H_2O$ (2).	S12
21	Table S3. Interaction parameters of the complex $[CdCl_2(H_4Brsal-dag)]H_6Brsal-dag.DMF.H_2O (2).$	S13
22	Table S4. The Frontier molecular orbital energies and calculated chemical reactivity parameters for the compounds.	S14
23	Table S5. Results of the inhibitory zones and the % antimicrobial activity of the complexes.	S14

Figure S1. Mass spectrum of [ZnCl₂(H₄Brsal-dag)]H₆Brsal-dag.DMF.H₂O with experimental and calculated isotopic patterns.

Figure S2. Mass spectrum of [CdCl₂(H₄Brsal-dag)]H₆Brsal-dag.DMF.H₂O with experimental and calculated isotopic patterns.

Figure S3. Experimental (a) and theoretical (b) IR spectra of the complex 1.

Figure S4. Experimental (a) and theoretical (b) IR spectra of the complex 2.

Figure S5. Experimental (a) and theoretical (b) Far IR spectra of the complex 1.

Figure S6. Experimental (a) and theoretical (b) Far IR spectra of the complex 2.

Figure S7. UV-vis spectra of the ligand, complex 1 and complex 2.

Figure S8. Unit cell packing diagrams of a) complex 1 and b) complex 2 along the 'a' axis, showing relevant hydrogen bonding interactions (blue dotted lines).

Figure S9. 2D Fingerprint plots showing the percentages of contacts contributed to the total Hirshfeld surface area of the complex 1(below) and the complex 2 (above).

Figure S10. Relative contributions of various intermolecular contacts to the Hirshfeld surface area in a) complex 1 and b) complex 2.

Figure S11. MEP plots for (a) ligand, (b) complex 1 and (c) complex 2.

Figure S12. PXRD (left) and simulated PXRD pattern from SC-XRD (right) of (a) the complex 1 and (b) the complex 2.

.

Figure S13. Zone of inhibition of (a) *S.aureus* (b) *E.coli* against ligand, complex **1** and complex **2**.

Figure S14. Binding mode of $[ZnCl_2(H_4Brsal-dag)]^-$ and its focused view of interactions with 1BNA.

Figure S15. Binding mode of $[CdCl_2(H_4Brsal-dag)]^-$ and its focused view of interactions with 1BNA.

Figure S16. Binding mode of $[ZnCl_2(H_4Brsal-dag)]^-$ and its focused view of interactions with DHFR from *S. aureus*.

Figure S17. 2D representation of (a) $[ZnCl_2(H_4Brsal-dag)]^-$ and (b) $[CdCl_2(H_4Brsal-dag)]^-$ at the active site residues of DHFR from *S. aureus*.

Figure S18. 2D representation of $[CdCl_2(H_4Brsal-dag)]^-$ with the active site residues of DHFR from *E. coli*.

	[ZnCl ₂ (H ₄ Brsal-dag)]H ₆ Brsal-	[CdCl ₂ (H ₄ Brsal-dag)]H ₆ Brsal-	
Parameters	dag·DMF·H ₂ O	dag·DMF·H ₂ O	
CCDC number	2259210	2290289	
Empirical Formula	$C_{33}H_{35}Br_4Cl_2N_{11}O_6Zn$	$C_{33}H_{35}Br_4CdCl_2N_{11}O_6$	
Formula weight (M)	1137.63	1184.66	
Temperature (T)	295(2) K	298(2) K	
Wavelength (Mo/Cu Kα)	1.54178 Å	0.71073 Å	
Crystal system	triclinic	triclinic	
Space group	P-1	P-1	
Unit call dimensions	a=12.4293(3)Å α=115.0430(10)°	$a = 12.3459(7) \text{ Å} \alpha = 116.555(2)^{\circ}$	
Unit cell dimensions	$b = 13.9253(3)$ Å $\beta = 99.3430(10)^{\circ}$	b =14.1549(9) Å β =99.070(2)°	
	$c= 14.0492(3)$ Å $\gamma = 95.0030(10)^{\circ}$	$c= 14.4164(9) \text{ Å} \gamma= 94.806(2)^{\circ}$	
Volume V, Z	2140.51(8) Å ³ , 2	2191.2(2) Å ³ , 2	
Calculated density (ρ)	1.765 g/cm^3	1.796 g/cm ³	
Absorption coefficient, μ	6.792 mm ⁻¹	4.322 mm^{-1}	
<i>F(000)</i>	1124	1160	
Crystal size	0.223 x 0.052 x 0.035 mm	0.305 x 0.196 x 0.124 mm	
	-14≤h≤14,	-15≤h≤15,	
Limiting Indices	-16≤k<=15,	-17≤k<=17,	
	-16 <u><</u> 1<=16	-17 <u>≤</u> 1<=17	
Reflections collected	77726	100702	
Independent Reflections	7857[R(int) =0.1049]	8307[R(int) =0.0623]	
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	
Data / restraints / parameters	7857/8/555	8307/10/554	
Goodness-of-fit on F^2	1.065	1.084	
Final <i>R</i> indices $[I > 2\sigma (I)]$	$R_1 = 0.0510, wR_2 = 0.1046$	$R_1 = 0.0424, wR_2 = 0.0990$	
<i>R</i> indices (all data)	$R_1 = 0.1142, wR_2 = 0.1250$	$R_1 = 0.0700, wR_2 = 0.1182$	
	'w=1/[\s^2^(Fo^2^)+(0.0432P)^2^	'w=1/[\s^2^(Fo^2^)+(0.0442P)^2^	
Weighing Scheme	+4.6321P], where	+5.7744P], where	
	$P = (Fo^2 + 2Fc^2)/3'$	$P = (Fo^2^+ 2Fc^2)/3'$	
Largest difference peak and hole	0.725 and -0.705 e Å ⁻³	0.925 and -1.111 e Å ⁻³	
$\mathbf{R}_{1} = \Sigma \mathbf{F}_{o} - \mathbf{F}_{c} / \Sigma \mathbf{F}_{o} ; \ w\mathbf{R}_{2} = [\Sigma w(\mathbf{F}_{o}^{2} - \mathbf{F}_{c}^{2})^{2} / \Sigma w(\mathbf{F}_{o}^{2})^{2}]^{1/2}$			

Table S1. Crystal refinement parameters of the complexes $[ZnCl_2(H_4Brsal-dag)]H_6Brsal-dag \cdot DMF \cdot H_2O(1)$ and $[CdCl_2(H_4Brsal-dag)]H_6Brsal-dag \cdot DMF \cdot H_2O(2)$.

Bond lengths (Å)		Bond a	Bond angles (°)		
Cd101	2.216(3)	O1–Cd1–N1	79.12(14)		
Cd1–N4	2.287(4)	O1–Cd1–N4	148.74(13)		
Cd1–N1	2.327(4)	N1-Cd1-N4	70.86(15)		
Cd1–Cl1	2.4861(13)	O1-Cd1-Cl1	98.22(10)		
Cd1–Cl2	2.4884(13)	N1-Cd1-Cl1	111.96(11)		
N4-N5	1.390(6)	N4-Cd1-Cl1	100.82(11)		
C8–N3	1.314(6)	O1-Cd1-Cl2	91.84(10)		
C8–N4	1.336(7)	N1-Cd1-Cl2	137.33(11)		
N3–C8	1.355(7)	N4-Cd1-Cl2	104.22(11)		
N1-N2	1.379(6)	Cl1-Cd1-Cl2	110.59(4)		
N1-C7	1.283(7)				
O1–C1	1.326(6)				
O2–C15	1.354(7)				
Br2C12	1.904(6)				
C4–Br1	1.914(5)				

Table S2. The bond lengths (Å) and bond angles (°) of the complex $[CdCl_2(H_4Brsal-dag)]H_6Brsal-dag.DMF.H_2O$ (2).

Hydrogen bonding interactions					
D–H *** A	D-H (Å)	H A (Å)	DA (Å)	D–H ^{•••} A (°)	
N8–H8NB *** N6	0.83(4)	2.45(4)	2.736(6)	101(3)	
N8–H8NB Cl(2) ^a	0.83(4)	2.49(4)	3.267(5)	156(3)	
N8–H8NA *** N10	0.84(3)	2.31(6)	2.667(7)	106(5)	
N8–H8NA ^{···} Cl(1) ^a	0.84(3)	2.66(4)	3.370(5)	143(5)	
N2–H2N Cl(2) ^b	0.83(6)	2.63(3)	3.357(6)	147(6)	
N2–H2N O(6) ^b	0.83(6)	2.51(8)	3.135(15)	132(6)	
O2–H20 N5	0.96(5)	1.94(5)	2.714(6)	136(6)	
N3–H3NA *** O(3) ^b	0.84(6)	2.12(6)	2.906(9)	156(6)	
O3–H30 O(5)	0.95(8)	1.74(9)	2.627(13)	154(7)	
N3–H3NB N5	0.84(5)	2.30(8)	2.639(8)	104(6)	
O4–H40 N6	0.96(7)	1.94(8)	2.755(7)	141(6)	
N7–H7N Cl(1)	0.84(6)	2.44(5)	3.226(4)	157(5)	
N9–H9N O(1)	0.83(5)	1.86(5)	2.683(7)	175(5)	
С9–Н9 Сl2	0.93	2.75	3.591(5)	150	
C22–H22 O3	0.93	2.45	2.767(8)	100	
C32–H32A O5	0.96	2.37	2.81(3)	108	
D = donor, A = acceptor, Equivalent position codes a = 1-x,1-y,1-z; b = 1-x,2-y,1-z;					
π " π interactions					
Cg Cg	Cgv Cg (Å)	α (°)		β (°)	
$\overline{\mathrm{Cg}(1)}^{\mathrm{m}}\mathrm{Cg}(1)^{\mathrm{a}}$	3.597(3)	0.0(2))	15.6	
$Cg(1) \cdots Cg(2)^a$	3.784(3)	6.11(1	9)	28.7	
$Cg(2) = Cg(1)^{a}$	3.784(3)	6.11(1)	9)	22.6	

Table S3. Interaction parameters of the complex [CdCl₂(H₄Brsal-dag)]H₆Brsal-dag.DMF.H₂O (2).

 $Cg(2) \cdots Cg(1)^a$ 3.784(3) 6.11(19)

3.895(4)

3.667(3)

3.667(3)

 $Cg(4) \stackrel{\cdots}{\cdots} Cg(4)^{b}$

 $Cg(5) \cdots Cg(6)^{c}$

 $Cg(6) \cdots Cg(5)^{c}$ Equivalent position codes: a = 1-x, 2-y, 1-z; b = 1-x, 1-y, -z; c = 1-x, 1-y, 1-z

C–X $\cdots \pi$ interactions				
C–X ^{···} Cg	X *** Cg (Å)	C *** Cg (Å)	C-X *** Cg (°)	
C28–H28 Cg(3) ^a	2.60	3.501(7)	163	
Equivalent position codes: a= -x,1-y,1-z; Cg(3)= C(1), C(2), C(3), C(4), C(5), C(6).				

0.0(3)

9.3(3)

9.3(3)

26.8

11.3

20.2

Energy	H ₅ Brsal-dag.HCl	Complex 1	Complex 2
parameters (eV)	11,21001 008,1101	e empren 1	
НОМО	-5.93	-5.92	-5.93
HOMO-1	-6.21	-6.11	-6.61
LUMO	-3.02	-2.47	-2.48
LUMO+1	-2.16	-2.32	-2.29
E_{HOMO} – E_{LUMO} : ΔE	2.90	3.45	3.45
Ionization Energy, I	5.93	5.92	5.93
Electron Affinity, A	3.02	2.47	2.48
Chemical hardness, η	1.45	1.72	1.72
Electronegativity, χ	4.47	4.19	4.20
Chemical potential, μ	-4.47	-4.19	-4.20
Electrophilicity, ω	6.90	5.10	5.12
Total Energy	-4896645.56	-361630.84	-361153.39
Global softness, $\sigma\left(eV^{\text{-1}}\right)$	0.68	0.58	0.68
Nucleophilicity, ɛ (eV ⁻¹)	0.14	0.19	0.19
Dipole moment (Debye)	12.94	8.24	8.17

Table S4. The Frontier molecular orbital energies and calculated chemical reactivity parameters for the compounds.

Table S5. Results of the inhibitory zones and the % antimicrobial activity of the complexes.

Bacterial strains	Conc.(µL)	Complex 1	Complex 2	Ciprofloxacin	
	25	-	11mm, (52.3%)		
	50	-	20mm, (95.23%)	21	
E.COll	75	-	24mm, (114.28%)	21mm, (100%)	
	100	-	25mm, (119.04%)		
	25	-	-		
G	50	-	12mm, (30%)	40 (1000/)	
S.aureus	75	10mm, (25%)	12mm, (30%)	40mm, (100%)	
	100	11mm, (27.5%)	13mm, (32.5%)		