Electronic Supplementary Information

Amination of Polylactic Acid to Alanine by Ru-Co Bimetallic Catalyst

Meng Cui,*^a Guyue Liu,^a Cankun Ma,^a Zihan Cao,^a Yu Ye,^a Yongfu Shen,^a Xiuqin Zhang*^a

^a Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.

E-mail: cuimeng@bift.edu.cn; clyzxq@bift.edu.cn

Figure S1. The scanning electron microscope (SEM) image of TiO_2 .

Figure S2. XRD patterns of TiO_2 and Ru-Co/TiO₂ catalyst.

Figure S3. XPS spectra of the fresh Ru-Co/TiO₂ catalyst: (a) Ru 3d; (b) Co 2p.

ppm).

ppm).

Figure S6. ¹H NMR spectrum of commercial ammonium lactate (s-trioxane as internal standard, 5.24 ppm).

Figure S8. The results of recycling test. The reaction conditions were the same as that of entry 1 in Table 1.

Figure S9. (a) TEM image of the spent Ru-Co/TiO₂ catalyst. The HAADF image (b) and corresponding EDS elemental mapping (c, Ru; d, Co; e, Ti; f, O) of Ru-Co/TiO₂.

Binding Energy (eV) Figure S10. XPS spectra of the Ru-Co/TiO₂ catalyst: (a) Ru 3d of the fresh and spent catalyst; (b) Co 2p of the spent catalyst.