Ultrafine VN Quantum Dots Modified with Nitrogen Doped Reduced Graphene Oxide Anode Material for Enhanced Rate Capability and Lifespan of Lithium-ion Batteries

Dong Wang ^a, Zihan Guo ^a, Zhiwei Wang ^{a b}, Yanfang Gao ^{a *}

- ^a School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, P.R. China.
- ^b School of Business Administration, Inner Mongolia University of Finance and Economics, Hohhot, 010070, P.R. China.

Corresponding author: Yanfang Gao E-mail addresses: yf_gao@imut.edu.cn

1.Supporting figures and tables

Figure S1 SEM images of a) GO, b) NrGO, c) $V_xO_yQDs@GO-1$, d) VNQDs@NrGO-1, e) $V_xO_yQDs@GO-5$, f) VNQDs@NrGO-5, g) $V_xO_yQDs@GO-10$, and h) VNQDs@NrGO-10.

Figure S2 TGA date of VNQDs@NrGO-5.

Figure S3 a) TEM and b) HRTEM images of the discharged products on VNQDs@NrGO-5 at 2 A g^{-1} after 500 cycles.

Figure S4 C 1s spectra of the GO and $V_xO_yQDs@GO-5$.

Figure S5 Rate comparison of the VNQDs@NrGO-5 and previously reported vanadium-based nitrides for LIBs.¹⁻⁶

Samples	d(Å)	2θ (°)	Samples	d(Å)	2θ (°)
GO	8.9948	9.825	NrGO	3.3947	26.230
V _x O _y QDs@GO-1	8.5262	10.367	VNQDs@NrGO-1	3.4578	25.743
V _x O _y QDs@GO-5	7.4080	11.937	VNQDs@NrGO-5	3.4866	25.526
V _x O _y QDs@GO-10	7.2124	12.262	VNQDs@NrGO-10	3.5013	25.418

Table S1 The d-spacing and degree of the neat GO, rGO, VxOvQDs@GO-5, and VNQDs@NrGO-5

Table S2. The ratio of ID to IG for the investigated sheets, where ID and IG are the Raman intensities of the D and G peaks

Samples	ID: IG
GO	0.94
V _x O _y QDs@GO-5	0.97
NrGO	1.13
VNQDs@NrGO-5	1.16

Table S3 The atom percentage of elements (C, N, O, and V) in the XPS data

Samples	C (%)	O (%)	N (%)	V (%)		
GO	71.74	28.26				
V _x O _y QDs@GO-5	73.13	20.37		6.49		
NrGO	84.36	13.10	2.53			
VNQDs@NrGO-5	80.96	10.02	5.62	3.41		

Table S4 The atom percentage of C-C, C-O, C=C, and C=O according to the C 1s and the percentage of V-O/V-N according to the V 2p peak in the obtained XPS spectra

	0	1 1			1			
Samples	C-C	C-	C-O	C=O	O-C=O	V-	V-O-N	V-N
	(%)	N (%	(%)	(%)	(%)	O (%	(%)	(%)
))		
GO	54.31		38.51	6.24	0.94			
V _x O _y QDs@GO-5	68.93		23.00	4.29	3.78	100		
NrGO	52.82	25.55	15.86	2.82	2.95			
VNQDs@NrGO-5	45.74	32.95	9.33	2.92	9.06	39.72	30.37	29.89

Table S5 Resistance elements of four samples derived from the Nyquist plots.

Samples	$R_{s}\left(\Omega ight)$	$R_{ct}(\Omega)$	$W_{o}\left(\Omega ight)$
NrGO	1.649	215.8	228.4
VNQDs@NrGO-1	2.184	206.1	220.7
VNQDs@NrGO-5	1.236	81.84	72.62
VNQDs@NrGO-10	2.056	136.7	155.5

	Whether to use	Current	Cualing	Specific		
Samples	dangerous ammonia	density	number	capacity	Ref.	
	atmosphere	(A g ⁻¹)	number	(mAh g ⁻¹)		
	Na	0.1	100	400	1	
VNbC@VNO-500	No	5	1000	324	1	
VN-carbon coated	No	0.065	100	400	2	
VN nanopowders	Yes	0.1	250	634	3	
VO _x -VN encapsulated	No	0.5	200	380	4	
		2	/	220		
Porous VN	V	0.1	200	455	E	
nanosheets	Y es	1	250	341	3	
Co-VN@C	Yes	0.5	500	336	6	
		1	200	324		
VNQD@NrGO-5	N	0.1	10	492	This	
	INO	2	10000	324	work	

Table S6 Comparison of the electrochemical performance of VNQDs@NrGO-5 and various metal nitride electrodes in LIB applications.

REFERENCES

- C. Xu, K. Feng, X. Yang, Y. Cheng, X. Zhao, L. Yang and S. Yin, *Journal of Energy Storage*, 2023, 69, 107888.
- D. Kundu, F. Krumeich, R. Fotedar and R. Nesper, *J. Power Sources*, 2015, 278, 608-613.
- M. Qin, H. Wu, Z. Cao, D. Zhang, B. Jia and X. Qu, J. Alloys Compd., 2019, 772, 808-813.
- B. Long, M. S. Balogun, L. Luo, Y. Luo, W. Qiu, S. Song, L. Zhang and Y. Tong, Small, 2017, 13, 1702081.
- 5. X. Peng, W. Li, L. Wang, L. Hu, W. Jin, A. Gao, X. Zhang, K. Huo and P. K. Chu, *Electrochim. Acta*, 2016, **214**, 201–207.
- 6. T. Peng, Y. Guo, Y. Zhang, Y. Wang, D. Zhang, Y. Yang, Y. Lu, X. Liu, P. K. Chu and Y. Luo, *Appl. Surf. Sci.*, 2021, **536**, 147982.