Supporting Information

Theoretical Prediction of Negative Thermal Expansion in Cubic VF$_3$

Dingfeng Yanga,b,*, Yurou Tanga, Junzhu Yanga, Hongzheng Pua, Mingyu Pic,d,*, Yuanyuan Lie*

aCollege of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054, People’s Republic of China.

bChongqing Precision Medicine Industrial Technology Research Institute, Chongqing 400799, People’s Republic of China.

cCollege of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People’s Republic of China.

dCollege of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, People’s Republic of China.

eDepartment of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People’s Republic of China.

*Corresponding author.

Dingfeng Yanga,b,*, Chongqing 400054, People’s Republic of China.

Email address: yangxunscience@cqut.edu.cn

Mingyu Pic,d,*, Chongqing 401331, People’s Republic of China.

Email address: mingyupi@cqnu.edu.cn

Yuanyuan Lie*, Chongqing 400067, People’s Republic of China.

Email address: liyy@cque.edu.cn
Figure S1. The 3×3×3 supercell structure of (a) VF₃ and (b) ScF₃.

Figure S2. (a) Calculated band structure (b) density of states of cubic VF₃. (c) d-orbitals of V atom. Red dashed line indicates Fermi level.

Figure S3. Calculated thermodynamic properties of VF₃ versus temperature: (a) bulk modulus (B);
(b) heat capacities (C_p).

Figure S4. (a) Phonon dispersion (b) NTE and unit volume versus temperature (c) Phonon mode Grüneisen parameter (d) Grüneisen parameter along high symmetry direction of cubic ScF$_3$

Figure S5. (a) Electron localization function (ELF) (isosurface value: 0.6 born$^{-3}$) of ScF$_3$, Red, brown atoms denote V and F atoms, respectively. (b) The calculated COHP of ScF$_3$.

Figure S6. Calculated mode Grüneisen parameters of cubic supercell V$_{27}$F$_{81}$ with 0 e and 1 e, respectively. (1e/f.u.: adding one electron into the supercell V$_{27}$F$_{81}$)
Table S1. Elastic properties of cubic VF₃.

<table>
<thead>
<tr>
<th></th>
<th>C₁₁ (GPa)</th>
<th>C₁₂ (GPa)</th>
<th>C₄₄ (GPa)</th>
<th>B (GPa)</th>
<th>G (GPa)</th>
<th>E (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VF₃</td>
<td>299.26</td>
<td>35.29</td>
<td>25.73</td>
<td>123.28</td>
<td>53.09</td>
<td>139.27</td>
</tr>
</tbody>
</table>

Table S2. Calculated Grüneisen parameters(γᵢ) of cubic VF₃ at the M (0.5, 0.5, 0) and R (0.5, 0.5, 0.5) points, and compared with isostructural ScF₃ and ReO₃.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>M (0.5, 0.5, 0) Frequency (cm⁻¹)</th>
<th>γᵢ (°K⁻¹)</th>
<th>R (0.5, 0.5, 0.5) Frequency (cm⁻¹)</th>
<th>γᵢ (°K⁻¹)</th>
<th>Maximum NTE (×10⁶ K⁻¹)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>VF₃</td>
<td>72.48</td>
<td>-12.53</td>
<td>74.47</td>
<td>-11.82</td>
<td>-6.41 (80 K)</td>
<td>This work</td>
</tr>
<tr>
<td>ScF₃</td>
<td>34.92</td>
<td>-57.72</td>
<td>34.65</td>
<td>-98.81</td>
<td>-32.72 (160 K)</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td>34.85</td>
<td>-57.72</td>
<td>34.65</td>
<td>-98.81</td>
<td>-32.72 (160 K)</td>
<td></td>
</tr>
</tbody>
</table>