Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Oxygen defect based Cobalt-doped-NiMoO₄ Hierarchical hollow nanosheet-basednanosphere for oxygen evolution reaction

Zhuoxun Yin,^{*,a}Min Zhou,^a Xinping Li,^a Xiangcun Liu,^a Xinzhi Ma,^{*b} Yang Zhou,^{*c} Wei Chen,^a Jinlong Li,^a Lina Liu,^a Jun Lv^a

Figure S1 a,b)SEM image of MoEG c) TEM image of MoEG.

Figure S2 XRD patterns of Mo-EG @Ni(OH)2 CS and Co-doped-Mo-EG @Ni(OH)2 HNS

Figure S3 SEM images of the powder samples prepared at a) NiMo-EG b) Co1-NiMo₄-HNS, c)Co_{1.5}-NiMo4-HNS, d) Co₂-NiMo₄-HNS, e) Co₄-NiMo₄-HNS, and f)Co₆-NiMo₄-HNS.

Figure S4 TEM images of NiMoO₄-CS catalysts. a) Low-magnification TEM image, and b) HRTEM image. shows the interplanar distances at marked regions.

Figure S5 The EDX pattern of the Co₂-NiMoO₄-HNS.

Figure S6 Raman spectra of NiMoO4 (black) and Co₂-NiMoO₄-HNS (red).

Figure S7 a) The OER polarization curves of Co₂-NiMoO₄-HNS and NiMoO₄-CS in 1.0 M KOH. b) The corresponding Tafel plots of Co₂-NiMoO₄-HNS and NiMoO₄-CS
c) Nyquist plot representations of the electrochemical impedance spectra of Co₂-NiMoO₄-HNS and NiMoO₄-CS. d)The CV curves of Co₂-NiMoO₄-HNS.

Figure S8 The OER polarization curves of IrO₂.

Figure S9 The CV curves of a) Co₁-NiMoO₄-HNS, b)Co_{1.5}-NiMoO₄-HNS, c) Co₂-NiMoO₄-HNS, d) Co₄-NiMoO₄-HNS, (e)Co₆-NiMoO₄-HNS.

Figure S11 The kubelka-munk plot for band gap energy of Co₂-NiMoO₄-HNS and NiMoO₄-

CS

Figure S12 Water contact angle images of a) Co₁-NiMoO₄-HNS, b) Co₂-NiMoO₄-HNS, c) Co₄-NiMoO₄-HNS, d)Co₆-NiMoO₄-HNS, e)Co_{1.5}-NiMoO₄-HNS.

Figure S13 XRD patterns of Co₂-NiMoO₄ and after OER.

Figure S14 SEM of Co₂-NiMoO₄-HNS after OER.

Figure S15 a) high-resolution O 1s XPS spectra for Co₂-NiMoO₄-HNS after OER b) high-resolution Ni 2p XPS spectra for Co₂-NiMoO₄-HNS c) Co 2p d) Mo 3d.

Figure S16 High-resolution XPS spectra of O 1s

Catalysts	Overpotential at 10 mA cm ⁻² (mV vs RHE)	Electrolyte concentration (pH)	Ref.
Co ₂ -NiMoO ₄ -HNS	270	14	This work
Ni _{0.69} Co _{0.31} -P	276	13	1
CoOx-(a)	390	14	2
NiO	420	14	2
NiCoOx	380	14	2
NiMoN-550	312	14	3
Ni ₃ FeN	280	14	4
Co/N-C-800	274	14	5
Ni10-CoPi	320	14	5
Co ₂ Fe-MOF	280	14	5
Mn-NiMoO4	330	14	6
Co ₃ O4@NiMoO ₄	>300	14	7
NiO@MoO ₃ /VC	280	14	8
NiMoP@CoCH/CC-2	>270	14	9
NiMn LDHs	350	14	10
Co-NiMoN NRs	294	14	11
Mo ₂ C@NC/Co@NG-900	420	14	12
Co@Co ₃ O ₄ /NC-1	410	14	13

 Table S1. Comparison of OER activity data among different catalysts.

[1]Yin, Z., Zhu, C., Li, C., Zhang, S., Zhang, X., & Chen, Y. (2016). Hierarchical nickel – cobalt phosphide yolk – shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting. Nanoscale, 8(45), 19129 – 19138. doi:10.1039/c6nr07009d

[2] C. C. L. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, J. Am. Chem. Soc., 2013, 135, 16977.

[3] Z. X. Yin, Y. Sun, C. L. Zhu, C. Y. Li, X. T. Zhang, Y. J. Chen, J. Mater. Chem. A 2017, 5, 13648.

[4] X. D. Jia, Y. F. Zhao, G. B. Chen, L. Shang, R. Shi, X. F. Kang, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, T. R. Zhang, Adv. Energy Mater. 2016, 6, 1502585.

[5]Xi-Zheng Fan,Xin Du.In Situ Construction of Bifunctional N-Doped Carbon-Anchored Co Nanoparticles for OER and ORR ACS Appl. Mater. Interfaces, 2022, 14, 6, 8549 - 8556

[6]Zhuoxun, Zhang, Chen,etc. Hybrid-atom-doped NiMoO4 nanotubes for oxygen evolution reaction.

[7] X. Q. Du, N. Li and X. S. Zhang, Dalton Trans., 2018, 47, 12071.

[8] R. Illathvalappil, L. George and S. Kurungot, ACS Appl. Energy Mater., 2019, 2, 4987.

[9]F. F. Wang, K. Ma, W. Tian, J. C. Dong, H. Han, H. P. Wang, K. Deng, H. R. Yue, Y. X. Zhang, W. Jiang and J. Y. Ji, J. Mater. Chem. A, 2019, 7, 19589.

[10]A. Sumboja, J. W. Chen, Y. Zong, P. S. Lee and Z. L. Liu, Nanoscale, 2017, 9, 774.

[11]Z. X. Yin, Y. Sun, Y. J. Jiang, F. Yan and C. L. Zhu, ACS Appl. Mater. Interfaces, 2019, 11, 27751.

[12]Y. Wang, K. Y. Li, F. Yan, C. Y. Li, C. L. Zhu, X. T. Zhang and Y. J. Chen, Nanoscale, 2019, 11, 12563.

[13]A. Aijaz, J. Masa, C. Rçsler, W. Xia, P. Weide, A. J. R. Botz, R. A. Fischer, W. Schuhmann and M. Muhler, Angew. Chem., Int. Ed., 2016, 55, 4087.