Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

1	Supporting Information
2	Surfactant-assisted morphology modification of nanostructured
3	MnMoO₄ for high-performance asymmetric supercapacitors
4	Kumcham Prasad ¹ , TVM Sreekanth ² , Kisoo Yoo ^{2,*} , Jonghoon Kim ^{1,*}
5	¹ Energy storage and conversion laboratory, Department of Electrical Engineering, Chungnam
6	National University, Daejeon, 34134, South Korea.
7	² School of Mechanical Engineering, Yeungnam University, Gyeongsan-si, 38541, South
8	Korea
9	
10	Corresponding author: kisooyoo@yu.ac.kr (Prof. Kisoo Yoo)
11	whdgns0422@cnu.ac.kr (Prof. Jonghoon Kim)
12	
13	
14	Experimental section
15	Physical characterization

The phase formation and crystallinity of the MMO samples were analyzed using a 16 PANalytical X'Pert Pro X-ray diffractometer with Cu K α radiation source ($\lambda = 1.540$ Å) operating 17 at 40 kV and 30 mA. The chemical bonds present in the samples were examined using a Fourier 18 transform infrared spectrometer (FT-IR, Perkin Elmer, USA). An UV Raman spectrometer (Horiba 19 Jobin Yvon HR 800) was used to record Raman spectra of the samples in the backscattering mode 20 of 200 - 1000 cm⁻¹ with an Nd: YAG laser source (= 532 nm). The surface morphology of the 21 samples was examined using a S-4800, Hitachi, Japan, scanning electron microscope and EDX 22 analysis was carried out with an X-ray column attached to the FESEM instrument. The high-23 resolution transmission electron microscopy images of the samples were recorded using a HRTEM, 24 Tecnai G² F20 S-Twin, USA with a field-emission electron gun operated at 200 kV in Schottky 25 mode. The chemical composition and oxidation states of the samples were quantifies with an X-ray 26 photoelectron spectrometer (XPS, K-alpha, Thermo Scientific, USA) utilizing a monochromatic Al 27 Ka X-ray source (1486.6 eV). A 3-Flex, Micromeritics, USA, surface analyser was used to study 28 the surface characteristics of the samples. 29

- 30
- 31
- 32
- 33

34 **Electrochemical measurements**

All the electrochemical experiments were carried out at room temperature on a Biologic 35 VSP-150 electrochemical workstation. A three-electrode system was used for the measurements in 36 6.0 M KOH aqueous electrolyte utilizing the as-prepared MMO electrodes as working electrodes, 37 platinum mesh as counter electrode and Hg/HgO as reference electrode. The electrochemical 38 techniques such as cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and 39 electrochemical impedance spectroscopy (EIS) were used to evaluate the electrochemical 40 performance of the electrodes. The practical application of the electrodes is tested by fabricating an 41 asymmetric (ASC) supercapacitor device using MMO-C as a cathode, activated carbon (AC) as an 42 anode and Whatman filter paper as a separator. A solid-state electrolyte was prepared by dissolving 43 3g of PVA and 3g of KOH in 20 mL of water separately. Then the KOH solution was added drop-44 wise to the PVA solution under continuous magnetic stirring at 85 °C for 4h. The PVA-KOH was 45 obtained after 12h at room temperature. Then the MMO-C, AC electrodes and separator were 46 dipped in the electrolyte for 10 minutes and dried for 12h at room temperature to evaporate the 47 excess water. The electrodes were then assembled face-to-face using the filter paper as an ion-48 porous separator between them. The ASC device was tested as long as the electrolyte was solidified. 49 50 The following equations were used to determine the specific capacitance, energy and power densities of the device. 51

$$S_{s} = \frac{I \times \Delta t}{M \times \Delta V}$$

53

$$E = \frac{I \int V \, dt}{M \times 3.6} \tag{S2}$$

Δt

(S3)

5	4
5	5

$$P = \frac{3600 \times E}{\Delta t}$$

57

where, I stands for applied current in Amperes, Δt stands for discharging time in seconds, M stands 58 for total active mass loaded on both the electrodes in grams, ΔV for potential window and $\int V(t) dt$ 59 is the integrated area of discharge curves. 60

(S1)

67	Table S1: The peak positions and d-spacing values of MMO samples in comparison with standard
68	data obtained from XRD spectra.

	2θ (°)				d-spacing (Å)				
hbl	Standard Observed value			alue	Standard	Observed value			
	value	MMO	ММО-Р	ММО-С	value	MMO	MMO-P	MMO-C	
(-201)	18.276	18.923	18.771	18.834	4.735	4.686	4.724	4.708	
(021)	22.730	22.762	22.693	22.821	3.909	3.904	3.915	3.894	
(201)	24.709	24.746	24.654	24.751	3.600	3.595	3.608	3.594	
(220)	25.766	25.803	25.767	25.819	3.455	3.450	3.455	3.448	
(002)	25.969	26.774	26.721	26.719	3.428	3.327	3.334	3.334	
(-311)	27.766	27.834	27.781	27.846	3.210	3.203	3.209	3.201	
(112)	31.256	31.279	31.279	31.345	2.859	2.857	2.857	2.851	
(-222)	33.046	33.134	33.081	33.129	2.708	2.702	2.706	2.702	
(400)	35.710	35.731	35.625	35.713	2.512	2.511	2.518	2.512	
(-132)	37.941	37.851	37.798	37.897	2.370	2.375	2.378	2.372	
(-113)	39.078	39.123	39.070	39.153	2.303	2.301	2.304	2.299	
(222)	40.449	40.395	40.395	40.409	2.228	2.231	2.231	2.230	
(-332)	42.840	42.674	42.780	42.781	2.109	2.117	2.112	2.112	
(113)	44.029	44.052	44.105	44.108	2.055	2.054	2.052	2.052	
(421)	45.918	45.695	45.695	45.693	1.975	1.984	1.984	1.984	
(332)	51.875	52.055	51.896	51.974	1.761	1.755	1.760	1.758	
(422)	54.455	54.440	54.387	54.486	1.684	1.684	1.686	1.683	
(024)	57.064	57.143	57.143	57.128	1.613	1.610	1.611	1.608	
(620)	58.363	58.415	58.256	58.384	1.580	1.579	1.582	1.579	
(-533)	59.666	59.528	59.475	59.641	1.548	1.552	1.553	1.549	
(-153)	62.470	62.390	62.600	62.412	1.485	1.487	1.483	1.487	

Table S2: Unit cell parameters of MMO samples.

SampleLattice parametersCell volumeCrystallite size	_				
		Sample	Lattice parameters	Cell volume	Crystallite size

	a (Å)	b (Å)	c (Å)	β (°)		
MMO	10.463	9.500	7.135	106.382	680.42	19.83
ММО-Р	10.433	9.527	7.117	105.829	680.57	20.95
ММО-С	10.493	9.463	7.126	106.304	679.12	18.19

73	Table S3: The	specific capa	citance of the prese	ent work in compariso	on with different	MnMoO ₄ -based materials.
		1 1				•

Electrode Material	Synthesis method	Electrolyte	Specific capacitance	Cycle stability	Ref.
α-MnMoO ₄ /graphene composite	Hydrothermal	1.0 M Na ₂ SO ₄	364 F g ⁻¹ @ 2 A g ⁻¹	88%, 1000 cycles @ 8 A g ⁻¹	[1]
MnMoO ₄ /CNF	Electrospinning	2.0 M KOH	389.7 F g ⁻¹ @ 0.1 A g ⁻¹	92.1%, 5000 cycles @ 0.5 A g ⁻¹	[2]
Rod-like α-MnMoO ₄	Hydrothermal	2.0 M KOH	446.7 F g ⁻¹ @ 1 mA cm ⁻²	81.12%, 3000 cycles @ 8 mA cm ⁻²	[3]
α -MnMoO ₄ nanorods	Hydrothermal	2.0 M KOH	551 F g ⁻¹ @ 1 A g ⁻¹	89%, 1000 cycles @ 5 A g ⁻¹	[4]
3D fan-like α- MnMoO ₄	Precipitation	2.0 M KOH	562 F g ⁻¹ @ 1 A g ⁻¹	99.8%, 1000 cycles @ 1 A g ⁻¹	[5]
MnMoO ₄ / NiWO ₄	Hydrothermal	2.0 M KOH	598 F g ⁻¹ @ 1 A g ⁻¹	82%, 5000 cycles @ 1 A g ⁻¹	[6]
Co ₃ O ₄ /MnMoO ₄	Hydrothermal	3.0 M KOH	663.75 F g^{-1} @ 2.5 mA cm ⁻²	95.32%, 3000 cycles @ 3 A g ⁻¹	[7]
NiCo ₂ O ₄ /MnMoO ₄	Hydrothermal	3.0 M KOH	1118 F g ⁻¹ @ 1 A g ⁻¹	87.85%, 5000 cycles @ 1 A g ⁻¹	[8]
NiCo ₂ O ₄ /MnMoO ₄	Hydrothermal	3.0 M KOH	1169 F g ⁻¹ @ 2.5 mA cm ⁻²	92.58%, 5000 cycles @ 30 mA cm ⁻²	[9]
NiCo ₂ S ₄ /MnMoO ₄	Hydrothermal	3.0 M KOH	1186.44 F g ⁻¹ @ 1 A g ⁻¹	90.1%, 5000 cycles @ 10 A g ⁻¹	[10]
MnMoO ₄	Microwave synthesis	3.0 M KOH	1549 C g ⁻¹ @ 2 A g ⁻¹	139%, 5000 cycles @ 5 A g ⁻¹	[11]
ММО	Hydrothermal	3.0 M KOH	535.02 F g ⁻¹ @ 1 A g ⁻¹	76.9%, 10000 cycles @ 5 A g ⁻¹	This work
MMO-P	Hydrothermal	3.0 M KOH	701.22 F g ⁻¹ @ 1 A g ⁻¹	87.4%, 10000 cycles @ 5 A g ⁻¹	This work
ММО-С	Hydrothermal	3.0 M KOH	919.66 F g ⁻¹ @ 1 A g ⁻¹	94.1%, 10000 cycles @ 5 A g ⁻¹	This work

76 Fig. S1. XRD pattern of (a) MMO-C, (b) MMO-P and (c) MMO samples in comparison with their

Fig. S2. CV curves (a, b, c) at different scan rates and GCD curves (d, e, f) at different current densities of MMO, MMO-P and MMO-C electrodes, respectively

Fig. S3. Peak current density vs square root of scan rate plot of the MMO samples.

Fig S4. log Z vs log $(i\omega)$ plot of MMO samples with the determined *p*-values.

91 References

92 [1] Ghosh, D.; Giri, S.; Moniruzzaman, M.; Basu, T.; Mandal, M.; Das, C. K.; α-MnMoO₄/

Graphene Hybrid Composite: High Energy Density Supercapacitor Electrode Material.
 Dalton Trans. 2014, 43, 11067.

- 95 [2] Ahmad, M. W.; Anand, S.; Shalini, K.; Ul-Islam, M.; Yang, D. J.; Choudhury, C. MnMoO₄
 96 Nanorods-Encapsulated Carbon Nanofibers Hybrid Mat as Binder-free Electrode for Flexible
- 97 Asymmetric Supercapacitors. *Mater. Sci. Semicond. Process.* 2021, 136, 106176.

[3] Zhang, Y.; Teng, Y.; Li, Y.; Du, X.; Liu, L.; Wu, Y.; Meng, Y.; Hua, Y.; Zhao, X.; Liu, X.
Microwave-assisted Green Synthesis of Manganese Molybdate Nanorods for HighPerformance Supercapacitor. *Ionics* 2019, 25, 4361-4370.

101 [4] Jayasubramaniyan, S.; Balasundari, S.; Rayjada, P. A.; Satyanarayana, N.; Muralidharan, P.

102 Microwave hydrothermal synthesis of α -MnMoO₄ nanorods for high electrochemical 103 performance supercapacitors, *RSC Adv.*, 2018, 8, 22559–22568.

104 [5] Wang, L. Q.; Yue, L. F.; Zang, X.; Zhu, H. Z.; Hao, X. P.; Leng, Z.; Liu, X. L. Chen, S. G.

105 Synthesis of 3D α-MnMoO₄ Hierarchical Architectures for High-Performance Supercapacitor

106 Applications, *CrystEngComm*, 2013, 18, 9286–9291.

- Feng, X. S.; Huang, Y.; Chen, M. H.; Chen, X. F.; Li, C.; Zhou, S. H.; Gao, X. G. Selfassembly of 3D hierarchical MnMoO₄/NiWO₄ microspheres for high-performance
 supercapacitor, *J. Alloys Compd.*, 2018, 763, 801–807.
- 110 [7] Cui, D. F.; Li, Y. F.; Li, Y. K.; Fan, Y. Y.; Chen, H. M.; Xu, H. Y.; Xue, C. Y.
 111 Co₃O₄@MnMoO₄ Nanorod Clusters as an Electrode Material for Superior Supercapacitors,
- 112 Int. J. Electrochem. Sci., 2020, 15, 2776–2791.
- 113 [8] Gu, Z. X.; Zhang, X. J. NiCo₂O₄@MnMoO₄ Core-shell Flower for High-Performance
 114 Supercapacitors, *J. Mater. Chem. A*, 2016, 4, 8249–8254.
- 115 [9] Yuan, Y. L.; Wang, W. C.; Yang, J.; Tang, H. C.; Ye, Z. Z.; Zeng, Y. J.; Lu, J. G. Three-
- dimensional NiCo₂O₄@MnMoO₄ core-shell nanoarrays for high-performance asymmetric
 supercapacitors, *Langmuir*, 2017, 33, 10446–10454.
- 118 [10] Wei, X. J.; Li, Y. H.; Peng, H. R.; Liu, C. L.; Zhang, Y. H.; Xiao, P. Core-shell
 NiCo₂S₄@MnMoO₄ as an Advanced Electrode Material for High-performance
 Electrochemical Energy Storage, *ChemElectroChem*, 2017, 4, 2634–2642.
- 121 [11] Jabeen, S.; Kumar, P.; Samra, K. S. Boosting the electrochemical characteristics of MnMoO₄
 122 nanoparticles for supercapacitor applications. *J. Appl. Electrochem.* 2023.
 123 https://doi.org/10.1007/s10800-023-02034-3.
- 124